मराठी

Find the Angle Between the Lines Whose Direction Cosines Are Given by the Equations 2l + 2m − N = 0, Mn + Ln + Lm = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0

बेरीज

उत्तर

The given relations are

2l + 2m − n = 0                   .....(1)

mn + ln + lm = 0                 .....(2)

From (1), we have

n = 2l + 2m

Putting this value of n in (2), we get

\[m\left( 2l + 2m \right) + l\left( 2l + 2m \right) + lm = 0\]

\[ \Rightarrow 2lm + 2 m^2 + 2 l^2 + 2lm + lm = 0\]

\[ \Rightarrow 2 m^2 + 5lm + 2 l^2 = 0\]

\[ \Rightarrow \left( 2m + l \right)\left( m + 2l \right) = 0\]

\[ \Rightarrow 2m + l = 0 \text{ or m + 2l = 0}\]

\[ \Rightarrow l =\text{  - 2m  or l } = - \frac{m}{2}\]

\[\text{ When  l} = - 2m\]  we have

\[n = 2 \times \left( - 2m \right) + 2m = - 4m + 2m = - 2m\]

When  \[l = - \frac{m}{2}\] we have

\[n = 2 \times \left( - \frac{m}{2} \right) + 2m = - m + 2m = m\]

Thus, the direction ratios of two lines are proportional to

\[- 2m, m, - 2m\]  and \[- \frac{m}{2}, m, m\]

Or  \[- 2, 1, - 2\] and -1,2,2

So, vectors parallel to these lines are \[\vec{a} = - 2 \hat{i} + \hat{j} - 2 \hat{k}\] and \[\vec{b} = -  \hat{i} + 2\hat{j} - 2 \hat{k}\] 

Let `theta` be the angle between these lines, then `theta` is also the anglebetween   `vec a and`

`vec b`

\[\therefore \cos\theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right|\left| \vec{b} \right|}\]

\[ = \frac{\left( - 2 \hat{i} + \hat{j} - 2 \hat{k} \right) . \left( - \hat{i} + 2 \hat{j} + 2 \hat{k} \right)}{\sqrt{4 + 1 + 4}\sqrt{1 + 4 + 4}}\]

\[ = \frac{- 2 \times \left( - 1 \right) + 1 \times 2 + \left( - 2 \right) \times 2}{3 \times 3}\]

\[ = \frac{2 + 2 - 4}{9}\]

\[ = 0\]

\[ \Rightarrow \theta = \frac{\pi}{2}\]

Thus, the angle between the two lines whose direction cosines are given by the given relations is

\[\frac{\pi}{2}\]

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Direction Cosines and Direction Ratios - Exercise 27.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 16.4 | पृष्ठ २३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


Find the direction cosines of a line which makes equal angles with the coordinate axes.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


What are the direction cosines of Z-axis?


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the distance of the point P (xyz) from XOY plane.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


If a unit vector  `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with }  \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


The distance of the point P (abc) from the x-axis is 


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


Find the direction cosine of a line which makes equal angle with coordinate axes.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


The d.c's of a line whose direction ratios are 2, 3, –6, are ______.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×