हिंदी

Find the Angle Between the Lines Whose Direction Cosines Are Given by the Equations 2l + 2m − N = 0, Mn + Ln + Lm = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0

योग

उत्तर

The given relations are

2l + 2m − n = 0                   .....(1)

mn + ln + lm = 0                 .....(2)

From (1), we have

n = 2l + 2m

Putting this value of n in (2), we get

\[m\left( 2l + 2m \right) + l\left( 2l + 2m \right) + lm = 0\]

\[ \Rightarrow 2lm + 2 m^2 + 2 l^2 + 2lm + lm = 0\]

\[ \Rightarrow 2 m^2 + 5lm + 2 l^2 = 0\]

\[ \Rightarrow \left( 2m + l \right)\left( m + 2l \right) = 0\]

\[ \Rightarrow 2m + l = 0 \text{ or m + 2l = 0}\]

\[ \Rightarrow l =\text{  - 2m  or l } = - \frac{m}{2}\]

\[\text{ When  l} = - 2m\]  we have

\[n = 2 \times \left( - 2m \right) + 2m = - 4m + 2m = - 2m\]

When  \[l = - \frac{m}{2}\] we have

\[n = 2 \times \left( - \frac{m}{2} \right) + 2m = - m + 2m = m\]

Thus, the direction ratios of two lines are proportional to

\[- 2m, m, - 2m\]  and \[- \frac{m}{2}, m, m\]

Or  \[- 2, 1, - 2\] and -1,2,2

So, vectors parallel to these lines are \[\vec{a} = - 2 \hat{i} + \hat{j} - 2 \hat{k}\] and \[\vec{b} = -  \hat{i} + 2\hat{j} - 2 \hat{k}\] 

Let `theta` be the angle between these lines, then `theta` is also the anglebetween   `vec a and`

`vec b`

\[\therefore \cos\theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right|\left| \vec{b} \right|}\]

\[ = \frac{\left( - 2 \hat{i} + \hat{j} - 2 \hat{k} \right) . \left( - \hat{i} + 2 \hat{j} + 2 \hat{k} \right)}{\sqrt{4 + 1 + 4}\sqrt{1 + 4 + 4}}\]

\[ = \frac{- 2 \times \left( - 1 \right) + 1 \times 2 + \left( - 2 \right) \times 2}{3 \times 3}\]

\[ = \frac{2 + 2 - 4}{9}\]

\[ = 0\]

\[ \Rightarrow \theta = \frac{\pi}{2}\]

Thus, the angle between the two lines whose direction cosines are given by the given relations is

\[\frac{\pi}{2}\]

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Direction Cosines and Direction Ratios - Exercise 27.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 16.4 | पृष्ठ २३

संबंधित प्रश्न

Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


Write the direction ratios of the following line :

`x = −3, (y−4)/3 =( 2 −z)/1`


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


Find the direction cosines of a line which makes equal angles with the coordinate axes.


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


What are the direction cosines of X-axis?


What are the direction cosines of Z-axis?


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


Write the distance of the point (3, −5, 12) from X-axis?


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


Write direction cosines of a line parallel to z-axis.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


The distance of the point P (abc) from the x-axis is 


The angle between the two diagonals of a cube is


 

 


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the direction cosine of a line which makes equal angle with coordinate axes.


The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.


Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×