हिंदी

Find the angle between the lines whose direction cosines are given by the equations l + 2m + 3n = 0 and 3lm − 4ln + mn = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0

योग

उत्तर

` \text{ Given } : `

\[l + 2m + 3n = 0 . . . (1)\]

\[3lm - 4\ln + mn = 0 . . . (2)\]

\[\text { From } \left( 1 \right), \text { we get } \]

\[l = - 2m - 3n\]

\[\text { Substituting }  l = - 2m - 3n \text { in } \left( 2 \right), \text { we get } \]

\[3\left( - 2m - 3n \right)m - 4\left( - 2m - 3n \right)n + mn = 0\]

\[ \Rightarrow - 6 m^2 - 9mn + 8mn + 12 n^2 + mn = 0\]

\[ \Rightarrow 12 n^2 - 6 m^2 = 0 \]

\[ \Rightarrow m^2 = 2 n^2 \]

\[ \Rightarrow m = \sqrt{2}n, - \sqrt{2} n\]

\[\text{ If } m = \sqrt{2}n,\text { then by substituting } m = \sqrt{2}n \text { in } \left( 1 \right), \text { we get } l = n\left( - 2\sqrt{2} - 3 \right) . \]

\[\text { If }  m = - \sqrt{2} n, \text { then by substituting }m = - \sqrt{2} n \text { in } \left( 1 \right), \text { we get } l = n\left( 2\sqrt{2} - 3 \right) . \]

\[\text { Thus, the direction ratios of the two lines are proportional to } n\left( - 2\sqrt{2} - 3 \right), \sqrt{2}n, n \text { and } n\left( 2\sqrt{2} - 3 \right), - \sqrt{2} n, n \text { or } \left( - 2\sqrt{2} - 3 \right), \sqrt{2} , 1 \text{ and } \left( - 2\sqrt{2} - 3 \right), - \sqrt{2}, 1 . \]

\[\text { Vectors parallel to these lines are } \]

\[ \vec{a} = \left( - 2\sqrt{2} - 3 \right) \hat{i} + \sqrt{2} \hat{j} + \hat{k} \]

\[ \vec{b} = \left( 2\sqrt{2} - 3 \right) \hat{i} - \sqrt{2} \hat{ j} + \hat{k} \]

\[\text{ If } \theta \text{ is the angle between the lines, then } \theta \text{ is also the angle between } \vec{a} \text{ and } \vec{b} . \]

\[\text{ Now}, \]

\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|}\]

\[ = \frac{\left[ \left( - 2\sqrt{2} - 3 \right) \hat{i} + \sqrt{2} \hat{j} + \hat{k} \right] . \left[ \left( 2\sqrt{2} - 3 \right) \hat{i} - \sqrt{2} \hat{j} + \hat{k} \right]}{\sqrt{8 + 9 + 12\sqrt{2} + 2 + 1} \sqrt{8 + 9 - 12\sqrt{2} + 2 + 1}} \]

\[ = \frac{- \left( 8 - 9 \right) - 2 + 1}{\sqrt{20 + 12\sqrt{2}} \sqrt{20 - 12\sqrt{2}}} \]

\[ = \frac{0}{\sqrt{20 + 12\sqrt{2}} \sqrt{20 - 12\sqrt{2}}}\]

\[ = 0\]

\[ \Rightarrow \theta = \frac{\pi}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Direction Cosines and Direction Ratios - Exercise 27.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 16.3 | पृष्ठ २३

संबंधित प्रश्न

Which of the following represents direction cosines of the line :

(a)`0,1/sqrt2,1/2`

(b)`0,-sqrt3/2,1/sqrt2`

(c)`0,sqrt3/2,1/2`

(d)`1/2,1/2,1/2`


Write the direction ratios of the following line :

`x = −3, (y−4)/3 =( 2 −z)/1`


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of X-axis?


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


Write the distance of the point (3, −5, 12) from X-axis?


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


For every point P (xyz) on the xy-plane,

 


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


If the directions cosines of a line are k,k,k, then ______.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


Find the direction cosine of a line which makes equal angle with coordinate axes.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×