Advertisements
Advertisements
प्रश्न
Find the angle between the lines whose direction cosines are given by the equations
2l − m + 2n = 0 and mn + nl + lm = 0
उत्तर
`\text{ Given } : `
\[2l - m + 2n = 0 . . . (1)\]
\[mn + nl + lm = 0 . . . (2)\]
\[\text{ From } \left( 1 \right), \text { we get } \]
\[m = 2l + 2n\]
\[\text { Substituting }m = 2l + 2n \text { in } \left( 2 \right), \text { we get }\]
\[\left( 2l + 2n \right)n + nl + l\left( 2l + 2n \right) = 0\]
\[ \Rightarrow 2\ln + 2 n^2 + nl + 2 l^2 + 2\ln = 0\]
\[ \Rightarrow 2 l^2 + 5ln + 2 n^2 = 0 \]
\[ \Rightarrow \left( l + 2n \right) \left( 2l + n \right) = 0\]
\[ \Rightarrow l = - 2n , - \frac{n}{2}\]
\[\text { If } l = - 2n, \text { then by substituting } l = - 2n \text { in } \left( 1 \right), \text { we get } m = - 2n . \]
\[\text { If } l = - \frac{n}{2}, \text { then by substituting } l = - \frac{n}{2} in \left( 1 \right), \text { we get } m = n . \]
\[\text{ Thus, the direction ratios of the two lines are proportional to } - 2n, - 2n, n \text { and } - \frac{n}{2}, n, n or - 2, - 2, 1 \text{ and }- \frac{1}{2}, 1, 1 . \]
\[\text{ Vectors parallel these lines are }\]
\[ \vec{a} = - 2 \hat{i} - \hat{2j} + \hat{k} \]
\[ \vec{b} = - \frac{1}{2} \hat{i} + \hat{j} + \hat{k} \]
\[\text{ If } \theta \text{ is the angle between the lines, then } \theta \text{ is also the angle between } \vec{a} \text { and } \vec{b .} \]
\[\text{ Now }, \]
\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|}\]
\[ = \frac{1 - 2 + 1}{\sqrt{4 + 4 + 1} \sqrt{ 1/4 + 1 + 1}} \]
\[ = 0 \]
\[ \Rightarrow \theta = \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.
Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
Write the distances of the point (7, −2, 3) from XY, YZ and XZ-planes.
If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.
Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) .
Find the direction cosines of a vector whose direction ratios are
`1/sqrt(2), 1/2, 1/2`
Find the direction cosines of a vector whose direction ratios are
0, 0, 7
Find the direction cosines and direction ratios for the following vector
`3hat"i" + hat"j" + hat"k"`
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians
If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
If the directions cosines of a line are k,k,k, then ______.
The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.
What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.
The d.c's of a line whose direction ratios are 2, 3, –6, are ______.
If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.
If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.