हिंदी

Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).

योग

उत्तर

The direction cosines of a line passing through the points P(x1, y1, z1) and Q(x2, y2, z2) are

`(x_2 - x_1)/"PQ"`

`(y_2 - y_1)/"PQ"`

`(z_2 - z_1)/"PQ"`

Here PQ = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2`

= `sqrt((-1 - 2)^2 + (2 - 3)^2 + (4 - 5)^2`

= `sqrt(9 + 1 + 1)`

= `sqrt(11)`

Hence D.C.’s are `+-((-3)/sqrt(11), (-1)/sqrt(11), (-1)/sqrt(11))` or `+- (3/sqrt(11), 1/sqrt(11), 1/sqrt(11))`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Three Dimensional Geometry - Solved Examples [पृष्ठ २२४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 11 Three Dimensional Geometry
Solved Examples | Q 2 | पृष्ठ २२४

संबंधित प्रश्न

Write the direction ratios of the following line :

`x = −3, (y−4)/3 =( 2 −z)/1`


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


If a unit vector  `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with }  \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 4hat"j" + 8hat"k"`


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×