Advertisements
Advertisements
प्रश्न
Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.
उत्तर
\[\text{ Given: } \]
\[l + m + n = 0 . . . \left( 1 \right)\]
\[2lm + 2\ln - nm = 0 . . . \left( 2 \right)\]
\[\text { From } \left( 1 \right), \text { we get } \]
\[l = - m - n\]
\[\text { Substituting } l = - m - n in \left( 2 \right), \text { we get }\]
\[2\left( - m - n \right)m + 2\left( - m - n \right)n - mn = 0\]
\[ \Rightarrow - 2 m^2 - 2mn - 2mn - 2 n^2 - mn = 0\]
\[ \Rightarrow 2 m^2 + 2 n^2 + 5mn = 0\]
\[ \Rightarrow \left( m + 2n \right) \left( 2m + n \right) = 0 \]
\[ \Rightarrow m = - 2n, - \frac{n}{2}\]
\[\text { If } m = - 2n, \text { then from } \left( 1 \right), \text { we get } l = n . \]
\[\text { If } m = - \frac{n}{2}, \text { then from } \left( 1 \right), \text { we get } l = - \frac{n}{2} . \]
\[\text { Thus, the direction ratios of the two lines are proportional to } n, - 2n, n \text { and } - \frac{n}{2}, - \frac{n}{2}, n, \text { i . e } . 1, - 2, 1 \text { and } - \frac{1}{2}, - \frac{1}{2}, 1 . \]
\[\text { Hence, their direction cosines are } \]
\[ \pm \frac{1}{\sqrt{6}}, \pm \frac{- 2}{\sqrt{6}}, \pm \frac{1}{\sqrt{6}} \]
\[ \pm \frac{- 1}{\sqrt{6}}, \pm \frac{- 1}{\sqrt{6}}, \pm \frac{2}{\sqrt{6}}\]
APPEARS IN
संबंधित प्रश्न
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
Which of the following represents direction cosines of the line :
(a)`0,1/sqrt2,1/2`
(b)`0,-sqrt3/2,1/sqrt2`
(c)`0,sqrt3/2,1/2`
(d)`1/2,1/2,1/2`
Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.
If l1, m1, n1 and l2, m2, n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1, n1l2 − n2l1, l1m2 − l2m1.
If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.
If a line makes angles of 90°, 60° and 30° with the positive direction of x, y, and z-axis respectively, find its direction cosines
Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .
Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.
Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.
Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
What are the direction cosines of X-axis?
What are the direction cosines of Z-axis?
Write the distances of the point (7, −2, 3) from XY, YZ and XZ-planes.
A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.
Write the coordinates of the projection of point P (x, y, z) on XOZ-plane.
Find the distance of the point (2, 3, 4) from the x-axis.
If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
The angle between the two diagonals of a cube is
If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.
Verify whether the following ratios are direction cosines of some vector or not
`4/3, 0, 3/4`
Find the direction cosines of a vector whose direction ratios are
1, 2, 3
Find the direction cosines of a vector whose direction ratios are
`1/sqrt(2), 1/2, 1/2`
Find the direction cosines of a vector whose direction ratios are
0, 0, 7
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.
Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.
If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.
Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.