Advertisements
Advertisements
Question
Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.
Solution
\[\text{ Given: } \]
\[l + m + n = 0 . . . \left( 1 \right)\]
\[2lm + 2\ln - nm = 0 . . . \left( 2 \right)\]
\[\text { From } \left( 1 \right), \text { we get } \]
\[l = - m - n\]
\[\text { Substituting } l = - m - n in \left( 2 \right), \text { we get }\]
\[2\left( - m - n \right)m + 2\left( - m - n \right)n - mn = 0\]
\[ \Rightarrow - 2 m^2 - 2mn - 2mn - 2 n^2 - mn = 0\]
\[ \Rightarrow 2 m^2 + 2 n^2 + 5mn = 0\]
\[ \Rightarrow \left( m + 2n \right) \left( 2m + n \right) = 0 \]
\[ \Rightarrow m = - 2n, - \frac{n}{2}\]
\[\text { If } m = - 2n, \text { then from } \left( 1 \right), \text { we get } l = n . \]
\[\text { If } m = - \frac{n}{2}, \text { then from } \left( 1 \right), \text { we get } l = - \frac{n}{2} . \]
\[\text { Thus, the direction ratios of the two lines are proportional to } n, - 2n, n \text { and } - \frac{n}{2}, - \frac{n}{2}, n, \text { i . e } . 1, - 2, 1 \text { and } - \frac{1}{2}, - \frac{1}{2}, 1 . \]
\[\text { Hence, their direction cosines are } \]
\[ \pm \frac{1}{\sqrt{6}}, \pm \frac{- 2}{\sqrt{6}}, \pm \frac{1}{\sqrt{6}} \]
\[ \pm \frac{- 1}{\sqrt{6}}, \pm \frac{- 1}{\sqrt{6}}, \pm \frac{2}{\sqrt{6}}\]
APPEARS IN
RELATED QUESTIONS
If l1, m1, n1 and l2, m2, n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1, n1l2 − n2l1, l1m2 − l2m1.
Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
Find the angle between the lines whose direction ratios are proportional to a, b, c and b − c, c − a, a− b.
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
Find the angle between the lines whose direction cosines are given by the equations
2l + 2m − n = 0, mn + ln + lm = 0
Define direction cosines of a directed line.
What are the direction cosines of Z-axis?
Write the distance of the point (3, −5, 12) from X-axis?
If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?
Write direction cosines of a line parallel to z-axis.
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 3hat"k" + 4hat"j"`
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians
If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
Find the direction cosine of a line which makes equal angle with coordinate axes.
What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
The d.c's of a line whose direction ratios are 2, 3, –6, are ______.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.
Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.
If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.