English

Write the Coordinates of the Projection of the Point P (2, −3, 5) on Y-axis. - Mathematics

Advertisements
Advertisements

Question

Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.

Sum

Solution

The coordinates of the projection of the point P ( 2, -3, 5) on the y-axis are ( 0, -3, 0) as both X and coordinates of each point on the y-axis are equal to zero.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Direction Cosines and Direction Ratios - Very Short Answers [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 27 Direction Cosines and Direction Ratios
Very Short Answers | Q 15 | Page 25

RELATED QUESTIONS

Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


Write the direction ratios of the following line :

`x = −3, (y−4)/3 =( 2 −z)/1`


If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.

(A) `0,1/sqrt2,-1/sqrt2`

(B) `0,-1/sqrt2,-1/sqrt2`

(C) `1,1/sqrt2,1/sqrt2`

(D) `0,-1/sqrt2,1/sqrt2`


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


Write the distance of the point P (xyz) from XOY plane.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


If a unit vector  `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with }  \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


The angle between the two diagonals of a cube is


 

 


The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×