Advertisements
Advertisements
Question
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
Solution
Given, a = –18, b = 12, c = –4
∴ `sqrt(a^2 + b^2 + c^2)`
= `sqrt((-18)^2 + (12)^2 + (-4)^2)`
= `sqrt(324 + 144 + 16)`
= `sqrt484`
= 22
Let a, b, c be direction ratios, then direction cosine is given by,
∴ cos α = `a/sqrt(a^2 + b^2 + c^2)`
= `(-18)/22`
= `(-9)/11`
cos β = `b/sqrt(a^2 + b^2 + c^2)`
= `12/22`
= `6/11`
cos γ = `c/sqrt(a^2 + b^2 + c^2)`
= `(-4)/22`
= `(-2)/11`
Hence, the direction cosines of the line are `(-9)/11, 6/11` and `(-2)/11`.
RELATED QUESTIONS
If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`
Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
Find the angle between the lines whose direction ratios are proportional to a, b, c and b − c, c − a, a− b.
Find the angle between the lines whose direction cosines are given by the equations
2l + 2m − n = 0, mn + ln + lm = 0
What are the direction cosines of X-axis?
Write the distances of the point (7, −2, 3) from XY, YZ and XZ-planes.
Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).
A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.
Write the ratio in which the line segment joining (a, b, c) and (−a, −c, −b) is divided by the xy-plane.
Write the distance of the point P (x, y, z) from XOY plane.
Write the coordinates of the projection of point P (x, y, z) on XOZ-plane.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
For every point P (x, y, z) on the xy-plane,
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
Find the direction cosines of a vector whose direction ratios are
1, 2, 3
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
Find the direction cosines and direction ratios for the following vector
`hat"j"`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 3hat"k" + 4hat"j"`
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.
The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.
If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.
The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.
If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.