English

If a line has the direction ratios −18, 12, −4, then what are its direction cosines? - Mathematics

Advertisements
Advertisements

Question

If a line has the direction ratios −18, 12, −4, then what are its direction cosines?

Sum

Solution

Given, a = –18, b = 12, c = –4

∴ `sqrt(a^2 + b^2 + c^2)`

= `sqrt((-18)^2 + (12)^2 + (-4)^2)`

= `sqrt(324 + 144 + 16)`

= `sqrt484`

= 22

Let a, b, c be direction ratios, then direction cosine is given by,

∴ cos α = `a/sqrt(a^2 + b^2 + c^2)`

= `(-18)/22`

= `(-9)/11`

cos β = `b/sqrt(a^2 + b^2 + c^2)`

= `12/22`

= `6/11`

cos γ = `c/sqrt(a^2 + b^2 + c^2)`

= `(-4)/22`

= `(-2)/11`

Hence, the direction cosines of the line are `(-9)/11, 6/11` and `(-2)/11`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Three Dimensional Geometry - Exercise 11.1 [Page 467]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 11 Three Dimensional Geometry
Exercise 11.1 | Q 3 | Page 467

RELATED QUESTIONS

If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.


Find the direction cosines of a line which makes equal angles with the coordinate axes.


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of X-axis?


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


Write the distance of the point P (xyz) from XOY plane.


Write the coordinates of the projection of point P (xyz) on XOZ-plane.


Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.


For every point P (xyz) on the xy-plane,

 


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 4hat"j" + 8hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×