English

If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______. - Mathematics

Advertisements
Advertisements

Question

If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.

Options

  • 1

  • 3

  • –2

  • 2

MCQ
Fill in the Blanks

Solution

If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be 2.

Explanation:

cos2α + cos2β + cos2γ = 1

`\implies` 1 – sin2α + 1 – sin2β + 1 – sin2γ = 1

`\implies` 3 – (sin2α + sin2β + sin2γ) = 1

`\implies` sin2α + sin2β + sin2γ = 2

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (February) Official

RELATED QUESTIONS

Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


Which of the following represents direction cosines of the line :

(a)`0,1/sqrt2,1/2`

(b)`0,-sqrt3/2,1/sqrt2`

(c)`0,sqrt3/2,1/2`

(d)`1/2,1/2,1/2`


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Find the angle between the lines whose direction cosines are given by the equations

2l − m + 2n = 0 and mn + nl + lm = 0


Define direction cosines of a directed line.


What are the direction cosines of X-axis?


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


For every point P (xyz) on the xy-plane,

 


For every point P (xyz) on the x-axis (except the origin),


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


Find the direction cosine of a line which makes equal angle with coordinate axes.


If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×