English

Find the Angle Between the Lines Whose Direction Ratios Are Proportional to A, B, C and B − C, C − A, a − B. - Mathematics

Advertisements
Advertisements

Question

Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.

Sum

Solution

\[\text{ Let }  \theta \text { be the angle between the given lines } . \]

\[\text{ We have } \]

\[ a_1 = a, b_1 = b, c_1 = c \]

\[ a_2 = b - c, b_2 = c - a, c_2 = a - b\]

\[\text{ Now }, \]

\[\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{{a_1}^2 + {b_1}^2 + {c_1}^2}\sqrt{{a_2}^2 + {b_2}^2 + {c_2}^2}}\]

\[ = \frac{a\left( b - c \right) + b\left( c - a \right) + c\left( a - b \right)}{\sqrt{a^2 + b^2 + c^2}\sqrt{\left( b - c \right)^2 + \left( c - a \right)\left( a - b \right)}} = \frac{ab - ac + bc - ab + ac - bc}{\sqrt{a^2 + b^2 + c^2}\sqrt{\left( b - c \right)^2 + \left( c - a \right)\left( a - b \right)}} = 0\]

\[ \Rightarrow \theta = \frac{\pi}{2}\]

\[\text { Thus, the angle between the given lines measures } 90° . \]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Direction Cosines and Direction Ratios - Exercise 27.1 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 13 | Page 23

RELATED QUESTIONS

Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


Find the direction cosines of a line which makes equal angles with the coordinate axes.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the angle between the lines whose direction cosines are given by the equations

2l − m + 2n = 0 and mn + nl + lm = 0


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


Write the distance of the point (3, −5, 12) from X-axis?


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


For every point P (xyz) on the xy-plane,

 


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


Find the direction cosine of a line which makes equal angle with coordinate axes.


The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×