Advertisements
Advertisements
Question
Verify whether the following ratios are direction cosines of some vector or not
`1/5, 3/5, 4/5`
Solution
The given ratios are l = `1/5`, m = `3/5`, n = `4/5`
l2 + m2 + n2 = `(1/5)^2 +(3/5)^2 + (4/5)^2`
= `1/25 + 9/25 + 16/25`
= `(1 + 9 + 16)/25`
= `26/25 ≠ 1`
If l, m, n are direction cosines of a vector then l2 + m2 + n2 = 1
∴ The given ratio `1/5, 3/5, 4/5` do not form the direction cosines of a vector.
APPEARS IN
RELATED QUESTIONS
If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.
(A) `0,1/sqrt2,-1/sqrt2`
(B) `0,-1/sqrt2,-1/sqrt2`
(C) `1,1/sqrt2,1/sqrt2`
(D) `0,-1/sqrt2,1/sqrt2`
Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.
Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).
Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.
Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.
Find the angle between the lines whose direction cosines are given by the equations
(i) l + m + n = 0 and l2 + m2 − n2 = 0
Find the angle between the lines whose direction cosines are given by the equations
2l − m + 2n = 0 and mn + nl + lm = 0
Find the angle between the lines whose direction cosines are given by the equations
l + 2m + 3n = 0 and 3lm − 4ln + mn = 0
For every point P (x, y, z) on the x-axis (except the origin),
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.
Verify whether the following ratios are direction cosines of some vector or not
`1/sqrt(2), 1/2, 1/2`
Verify whether the following ratios are direction cosines of some vector or not
`4/3, 0, 3/4`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
Find the direction cosines and direction ratios for the following vector
`hat"j"`
If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
Find the direction cosine of a line which makes equal angle with coordinate axes.
If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.