Advertisements
Advertisements
Question
Verify whether the following ratios are direction cosines of some vector or not
`4/3, 0, 3/4`
Solution
The given ratios are l = `4/3`, m = 0, n = `3/4`
l2 + m2 + n2 = `(4/3)^2 + 0^2 + (3/4)^2`
= `16/9 + 0 + 9/16`
= `(16 xx 16 + 9 xx 9)/(9 xx 16)`
= `(256 + 81)/144 ≠ 1`
If l, m, n are direction cosines of a vector then l2 + m2 + n2 = 1
∴ The given ratio do not form the direction cosines of a vector.
APPEARS IN
RELATED QUESTIONS
If l, m, n are the direction cosines of a line, then prove that l2 + m2 + n2 = 1. Hence find the
direction angle of the line with the X axis which makes direction angles of 135° and 45° with Y and Z axes respectively.
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
If a line has direction ratios 2, −1, −2, determine its direction cosines.
Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
Find the angle between the lines whose direction cosines are given by the equations
(i) l + m + n = 0 and l2 + m2 − n2 = 0
Write the distance of the point (3, −5, 12) from X-axis?
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
The distance of the point P (a, b, c) from the x-axis is
The angle between the two diagonals of a cube is
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
Find the direction cosines and direction ratios for the following vector
`5hat"i" - 3hat"j" - 48hat"k"`
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`
If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.
Find the direction cosine of a line which makes equal angle with coordinate axes.
The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.
If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.