Advertisements
Advertisements
प्रश्न
Verify whether the following ratios are direction cosines of some vector or not
`4/3, 0, 3/4`
उत्तर
The given ratios are l = `4/3`, m = 0, n = `3/4`
l2 + m2 + n2 = `(4/3)^2 + 0^2 + (3/4)^2`
= `16/9 + 0 + 9/16`
= `(16 xx 16 + 9 xx 9)/(9 xx 16)`
= `(256 + 81)/144 ≠ 1`
If l, m, n are direction cosines of a vector then l2 + m2 + n2 = 1
∴ The given ratio do not form the direction cosines of a vector.
APPEARS IN
संबंधित प्रश्न
If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.
Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
What are the direction cosines of Y-axis?
Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
If a unit vector `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with } \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
Verify whether the following ratios are direction cosines of some vector or not
`1/sqrt(2), 1/2, 1/2`
Find the direction cosines and direction ratios for the following vector
`hat"i" - hat"k"`
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.
If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.