मराठी

If a Line Makes Angles 90° and 60° Respectively with the Positive Directions of X and Y Axes, Find the Angle Which It Makes with the Positive Direction of Z-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.

बेरीज

उत्तर

Let the direction cosines of the line be l, m and n.
We know that l2 + m2 + n2 = 1.
Let the line make angle θ with the positive direction of the z-axis.

\[\alpha = 90° \beta = 60°, \gamma = \theta\]

\[\text{ So } , \cos^2 90° + \cos^2 60° + \cos^2 \theta = 1\]

\[ \Rightarrow 0 + \left( \frac{1}{2} \right)^2 + \cos^2 \theta = 1\]

\[ \Rightarrow \cos^2 \theta = 1 - \frac{1}{4}\]

\[ \Rightarrow \cos^2 \theta = \frac{3}{4}\]

\[ \Rightarrow \cos\theta = \pm \frac{\sqrt{3}}{2}\]

\[ \Rightarrow \theta = 30° \text{ or } 150°\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Direction Cosines and Direction Ratios - Very Short Answers [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 27 Direction Cosines and Direction Ratios
Very Short Answers | Q 21 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.

(A) `0,1/sqrt2,-1/sqrt2`

(B) `0,-1/sqrt2,-1/sqrt2`

(C) `1,1/sqrt2,1/sqrt2`

(D) `0,-1/sqrt2,1/sqrt2`


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).


Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)


The distance of the point P (abc) from the x-axis is 


If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.


If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×