Advertisements
Advertisements
प्रश्न
Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
उत्तर
\[\text { We know that two lines with direction ratios } a_1 , b_1 , c_1 \text { and } a_2 , b_2 , c_2 \text { are perpendicular if } a_1 a_2 + b_1 b_2 + c_1 c_2 = 0 . \]
\[\text { The direction ratios of the line passing through the points }\left( 1, - 1, 2 \right) \text{ and } \left( 3, 4, - 2 \right) \text{ are } \left( 3 - 1 \right), \left[ 4 - \left( - 1 \right) \right], \left( - 2 - 2 \right), \text { i . e } . 2, 5, - 4 . \]
\[ \Rightarrow a_1 = 2, b_1 = 5, c_1 = - 4\]
\[\text { Similarly, the direction ratios of the line passing through the points } \left( 0, 3, 2 \right) \text { and } \left( 3, 5, 6 \right) \text { are }\left( 3 - 0 \right), \left( 5 - 3 \right), \left( 6 - 2 \right), \text{ i . e} . 3, 2, 4 . \]
\[ \Rightarrow a_2 = 3, b_2 = 2, c_2 = 4\]
\[ \therefore a_1 a_2 + b_1 b_2 + c_1 c_2 = 2 \times 3 + 5 \times 2 + \left( - 4 \right) \times 4 = 6 + 10 - 16 = 0\]
` \text{ Thus, the line through the points (1, -1, 2) and (3, 4, -2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6) } `
APPEARS IN
संबंधित प्रश्न
Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).
Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`
Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.
Find the angle between the lines whose direction cosines are given by the equations
l + 2m + 3n = 0 and 3lm − 4ln + mn = 0
What are the direction cosines of Y-axis?
Write the distances of the point (7, −2, 3) from XY, YZ and XZ-planes.
Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.
Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(a, b, c) from x-axis.
A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
The angle between the two diagonals of a cube is
Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines
Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) .
Verify whether the following ratios are direction cosines of some vector or not
`1/sqrt(2), 1/2, 1/2`
Verify whether the following ratios are direction cosines of some vector or not
`4/3, 0, 3/4`
Find the direction cosines of a vector whose direction ratios are
0, 0, 7
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 4hat"j" + 8hat"k"`
If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
If the directions cosines of a line are k,k,k, then ______.
The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.
If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.
What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.
Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.
If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.