मराठी

Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).

बेरीज

उत्तर

Let A(3, 5,−4), B(−1, 1, 2) and C(−5, −5, −2).

Direction ratio of AB = (−1 − 3), (1 − 5), (2 − (−4))

= (−4, −4, 6)

|AB| = `sqrt((-4)^2 + (-4)^2 + (6)^2)`

= `sqrt(16 + 16 + 36)`

= `sqrt68`

= `2sqrt17`

Direction ratio of BC = (−5 − (−1), −5 − 1, −2 − 2)

= (−4, −6, −4)

|BC| = `sqrt((-4)^2 + (-6)^2 + (-4)^2)`

= `sqrt(16 + 36 + 16)`

= `sqrt68`

= `2sqrt17`

Direction ratio of CA = (−5 − 3, −5 − 5, −2 − (−4))

= (−8, −10, 2)

|CA| = `sqrt((-8)^2 + (-10)^2 + (2)^2)`

= `sqrt(64 + 100 + 4)`

= `sqrt168`

= `2sqrt42`

∴ AB are `< (-1 - 3)/|AB|, (1 - 5)/|AB|, (2 + 4)/|AB| >`

i.e., `< (-2)/sqrt17, (-2)/sqrt17, 3/sqrt17 >`

∴ d.c. of BC are `< (-5 + 1)/|BC|, (- 5 - 1)/|BC|, (- 2 -2)/|BC|>`

i.e., `< (-2)/sqrt17, (-3)/sqrt17, (-2)/sqrt17 >`

∴ d.c of CA are `< (3 + 5)/|CA|, (5 + 5)/|CA|, (- 4 + 2)/|CA|`

i.e., `< 4/sqrt42, 5/sqrt42, (-1)/sqrt42 >`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Three Dimensional Geometry - Exercise 11.1 [पृष्ठ ४६७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 11 Three Dimensional Geometry
Exercise 11.1 | Q 5 | पृष्ठ ४६७

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1 


Which of the following represents direction cosines of the line :

(a)`0,1/sqrt2,1/2`

(b)`0,-sqrt3/2,1/sqrt2`

(c)`0,sqrt3/2,1/2`

(d)`1/2,1/2,1/2`


If a line makes angles 90°, 135°, 45° with the X, Y, and Z axes respectively, then its direction cosines are _______.

(A) `0,1/sqrt2,-1/sqrt2`

(B) `0,-1/sqrt2,-1/sqrt2`

(C) `1,1/sqrt2,1/sqrt2`

(D) `0,-1/sqrt2,1/sqrt2`


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


Define direction cosines of a directed line.


What are the direction cosines of Y-axis?


What are the direction cosines of Z-axis?


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.


Write direction cosines of a line parallel to z-axis.


For every point P (xyz) on the xy-plane,

 


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


The angle between the two diagonals of a cube is


 

 


The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


If the directions cosines of a line are k,k,k, then ______.


What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×