Advertisements
Advertisements
प्रश्न
Write direction cosines of a line parallel to z-axis.
उत्तर
A line parallel to z−axis, makes an angle of 90°, 90° and 0° with the x, y and z axes, respectively.
Thus, the direction cosines are given by
l = cos 90° =0
m = cos 90° = 0
n = cos 0 =1
Therefore, direction cosines of a line parallel to the z−axis are 0, 0, 1.
APPEARS IN
संबंधित प्रश्न
Find the direction cosines of the line
`(x+2)/2=(2y-5)/3; z=-1`
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
Write the direction ratios of the following line :
`x = −3, (y−4)/3 =( 2 −z)/1`
Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.
Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).
Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).
Find the angle between the lines whose direction cosines are given by the equations
2l − m + 2n = 0 and mn + nl + lm = 0
Define direction cosines of a directed line.
Write the distances of the point (7, −2, 3) from XY, YZ and XZ-planes.
Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).
A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.
Write the ratio in which the line segment joining (a, b, c) and (−a, −c, −b) is divided by the xy-plane.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
Find the distance of the point (2, 3, 4) from the x-axis.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
For every point P (x, y, z) on the xy-plane,
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines
If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.
Verify whether the following ratios are direction cosines of some vector or not
`4/3, 0, 3/4`
Find the direction cosines of a vector whose direction ratios are
0, 0, 7
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians
If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`
If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`, find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
If the directions cosines of a line are k,k,k, then ______.
The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
The d.c's of a line whose direction ratios are 2, 3, –6, are ______.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.