मराठी

Write the direction ratios of the following line : x = −3, (y−4)/3 =( 2 −z)/1 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the direction ratios of the following line :

`x = −3, (y−4)/3 =( 2 −z)/1`

उत्तर

The equation of the given line can be rewritten as:

`(x+3)/0=(y−4)/3=(z−2)/(−1)`

Thus, the given line has direction ratios proportional to 0, 3, −1.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Patna Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


If a line has the direction ratios −18, 12, −4, then what are its direction cosines?


Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.


Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).


Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


What are the direction cosines of Y-axis?


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


If a unit vector  `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with }  \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.


For every point P (xyz) on the x-axis (except the origin),


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians


Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


Find the direction cosine of a line which makes equal angle with coordinate axes.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×