मराठी

O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA. - Mathematics

Advertisements
Advertisements

प्रश्न

O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.

बेरीज

उत्तर

We have A(a, b, c) and O(0, 0, 0)

∴ Direction ratios of OA = a – 0, b – 0, c – 0

∴ Direction cosines of line OA = `"a"/sqrt("a"^2 + "b"^2 + "c"^2)`

`"b"/sqrt("a"^2 + "b"^2 + "c"^2)`

`"c"/sqrt("a"^2 + "b"^2 + "c"^2)`

Now direction ratios of the normal to the plane are (a, b, c).

∴ Equation of the plane passing through the point A(a, b, c) is a(x – a) + b(y – b) + c(z – c) = 0

⇒ ax – a2 + by – b2 + cz – c2 = 0

⇒ ax + by + cz = a2 + b2 + c2

Hence, the required equation is ax + by + cz = a2 + b2 + c2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Three Dimensional Geometry - Exercise [पृष्ठ २३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 11 Three Dimensional Geometry
Exercise | Q 14 | पृष्ठ २३६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Which of the following represents direction cosines of the line :

(a)`0,1/sqrt2,1/2`

(b)`0,-sqrt3/2,1/sqrt2`

(c)`0,sqrt3/2,1/2`

(d)`1/2,1/2,1/2`


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


What are the direction cosines of X-axis?


What are the direction cosines of Y-axis?


What are the direction cosines of Z-axis?


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


Write the distance of the point P (xyz) from XOY plane.


Write the coordinates of the projection of point P (xyz) on XOZ-plane.


Find the distance of the point (2, 3, 4) from the x-axis.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


For every point P (xyz) on the x-axis (except the origin),


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`


Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


Find the direction cosine of a line which makes equal angle with coordinate axes.


The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×