मराठी

If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2 - Mathematics

Advertisements
Advertisements

प्रश्न

If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn

बेरीज

उत्तर

Given that l, m, n and l + δl, m + δm, n + δn, are the direction cosines of a variable line in two positions

∴ l2 + m2 + n2 = 1  ......(i)

And (l + δl)2 + (m + δm)2 + (n + δn)2 = 1  ......(ii)

⇒ l2 + δl2 + 2l.δl + m2 + δm2 + 2m.δm + n2 + δn2 + 2n.δn = 1

⇒ (l2 + m2 + n2) + (δl2 + δm2 + δn2) + 2(l.δl + m.δm + n.δn) = 1

⇒ 1 + (δl2 + δm2 + δn2) + 2(l.δl + m.δm + n.δn) = 1

⇒ l.δl + m.δm + n.δn =`-1/2(δl^2 + δm^2 + δn^2)`

Let `vec"a"` and `vec"b"` be the unit vectors along a line with d’cosines l, m, n and d (l + δl), (m + δm), (n + δn).

∴ `vec"a" = lhat"i" + mhat"j" + nhat"k"` and `vec"b" = (l + δl)hat"i" + (m + δm)hat"j" + (n + δn)hat"k"`

`cosδtheta = (vec"a"*vec"b")/(|vec"a"||vec"b"|)`

`cosδtheta = ((lhat"i" + mhat"j" + nhat"k").[(l + δl)hat"i" + (m + δm)hat"j" + (n + δn)hat"k"])/(1.1)`  .....`[because |vec"a"| = |vec"b"| = 1]`

⇒ cos δθ = l(l + δl) + m(m + δm) + n(n + δn)

⇒ cos δθ = l2 + l.δl + m2 + m.δm + n2 + n.δn

⇒ cos δθ = (l2 + m2 + n2) + (l.δl + m.δm + n.δn)

⇒ cos δθ = `1 - 1/2(δl^2 + δm^2 + δn^2)`

⇒ `1 - cosδtheta = 1/2 (δl^2 + δm^2 + δn^2)`

⇒ `2sin^2  (δtheta)/2 = 1/2 (δ1^2 + δm^2 + δn^2)`

⇒ `4sin^2  (δtheta)/2 = δl^2 + δm^2 + δn^2`

⇒ `4((δtheta)/2)^2 = δl^2 + δm^2 + δn^2`  ......`[(because (δtheta)/2  "is very small so"","),(sin  (δtheta)/2 = (δtheta)/2)]`

⇒ `(δtheta)^2 = δl^2 + δm^2 + δn^2`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Three Dimensional Geometry - Exercise [पृष्ठ २३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 11 Three Dimensional Geometry
Exercise | Q 13 | पृष्ठ २३६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


What are the direction cosines of Z-axis?


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the coordinates of the projection of point P (xyz) on XOZ-plane.


Write direction cosines of a line parallel to z-axis.


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are


The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are
0, 0, 7


Find the direction cosines and direction ratios for the following vector

`hat"j"`


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


The area of the quadrilateral ABCD, where A(0,4,1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to ______.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


Find the direction cosine of a line which makes equal angle with coordinate axes.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


The d.c's of a line whose direction ratios are 2, 3, –6, are ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×