मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Direction Cosines of the Line Passing Through the Points a (- 4, 2, 3) and B (1, 3, -2) Are - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........

पर्याय

  • `+-1/sqrt51,+-5/sqrt51,+-1/sqrt51`

  • `+-5/sqrt51, +-1/sqrt51, +- (-5)/sqrt51`

  • `+-sqrt5,+-1,+-5`

  • `+-sqrt51,+-sqrt51+-sqrt51`

MCQ

उत्तर

The direction ratios of the line are 1 + 4, 3 − 2, −2 − 3 i.e., 5, 1, −5

∴ the direction cosines of the line are

`+-5/sqrt(5^2+1^2+(-5)^2), +-1/sqrt(5^2+1^2+(-5)^2), +- -5/sqrt(5^2+1^2+(-5)^2)`

i.e `+-5/sqrt51, +-1/sqrt51, +- -5/sqrt51`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (October)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Find the angle between the lines whose direction ratios are proportional to abc and b − cc − aa− b.


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the angle between the lines whose direction cosines are given by the equations
(i) m + n = 0 and l2 + m2 − n2 = 0


Find the angle between the lines whose direction cosines are given by the equations

2l − m + 2n = 0 and mn + nl + lm = 0


Define direction cosines of a directed line.


What are the direction cosines of X-axis?


What are the direction cosines of Z-axis?


Write the distance of the point (3, −5, 12) from X-axis?


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


For every point P (xyz) on the xy-plane,

 


The distance of the point P (abc) from the x-axis is 


The angle between the two diagonals of a cube is


 

 


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) . 


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


If the directions cosines of a line are k,k,k, then ______.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


The d.c's of a line whose direction ratios are 2, 3, –6, are ______.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×