मराठी

Write the Ratio in Which Yz-plane Divides the Segment Joining P (−2, 5, 9) and Q (3, −2, 4). - Mathematics

Advertisements
Advertisements

प्रश्न

Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).

बेरीज

उत्तर

\[ \text{ Let the YZ - plane divide the line segment joining points } P\left( - 2, 5, 9 \right) \text { and Q } \left( 3, - 2, 4 \right) \text{ in the ratio k: 1 } . \]

\[ \text{ Using the section formula, the coordinates of the point of intersection are given by }\]

\[\left( \frac{k\left( 3 \right) - 2}{k + 1}, \frac{k\left( - 2 \right) + 5}{k + 1}, \frac{k\left( 4 \right) + 9}{k + 1} \right)\]

\[ \text{ On the YZ - plane, the X - coordinate of any point is zero } . \]

\[ \therefore \frac{k\left( 3 \right) - 2}{k + 1} = 0\]

\[ \Rightarrow 3k - 2 = 0\]

\[ \Rightarrow k = \frac{2}{3}\]

\[ \text{ Thus, the YZ - plane divides the line segment formed by joining the given points in the ratio 2: 3 internally  } . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Direction Cosines and Direction Ratios - Very Short Answers [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 27 Direction Cosines and Direction Ratios
Very Short Answers | Q 7 | पृष्ठ २४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1 


Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.


Find the angle between the lines whose direction cosines are given by the equations
(i) m + n = 0 and l2 + m2 − n2 = 0


Define direction cosines of a directed line.


What are the direction cosines of Y-axis?


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


Write direction cosines of a line parallel to z-axis.


If a unit vector  `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with }  \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


Verify whether the following ratios are direction cosines of some vector or not

`1/5, 3/5, 4/5`


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines of a vector whose direction ratios are
0, 0, 7


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 4hat"j" + 8hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians


If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.


The d.c's of a line whose direction ratios are 2, 3, –6, are ______.


A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.


The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.


If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.


Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×