Advertisements
Advertisements
प्रश्न
If a line makes angles of 90°, 60° and 30° with the positive direction of x, y, and z-axis respectively, find its direction cosines
उत्तर
Let the direction cosines of the line be l, m, n.
Now,
\[l = \cos {90}^0 = 0\]
\[m = \cos {60}^0 = \frac{1}{2}\]
\[n = \cos {30}^0 = \frac{\sqrt{3}}{2}\]
\[\text{Therefore, the direction cosines of the line are }0, \frac{1}{2}, \frac{\sqrt{3}}{2} . \]
APPEARS IN
संबंधित प्रश्न
Which of the following represents direction cosines of the line :
(a)`0,1/sqrt2,1/2`
(b)`0,-sqrt3/2,1/sqrt2`
(c)`0,sqrt3/2,1/2`
(d)`1/2,1/2,1/2`
Write the direction ratios of the following line :
`x = −3, (y−4)/3 =( 2 −z)/1`
Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).
If l1, m1, n1 and l2, m2, n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1, n1l2 − n2l1, l1m2 − l2m1.
If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.
Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
Find the angle between the lines whose direction cosines are given by the equations
(i) l + m + n = 0 and l2 + m2 − n2 = 0
Find the angle between the lines whose direction cosines are given by the equations
l + 2m + 3n = 0 and 3lm − 4ln + mn = 0
Write the ratio in which the line segment joining (a, b, c) and (−a, −c, −b) is divided by the xy-plane.
Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.
Write the coordinates of the projection of point P (x, y, z) on XOZ-plane.
If a unit vector `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with } \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
The angle between the two diagonals of a cube is
Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) .
Find the direction cosines and direction ratios for the following vector
`hat"j"`
Find the direction cosines and direction ratios for the following vector
`5hat"i" - 3hat"j" - 48hat"k"`
Find the direction cosines and direction ratios for the following vector
`3hat"i" - 3hat"k" + 4hat"j"`
Find the direction cosines and direction ratios for the following vector
`hat"i" - hat"k"`
If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.
P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.
The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
If the directions cosines of a line are k,k,k, then ______.
Find the direction cosine of a line which makes equal angle with coordinate axes.
The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.
The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.
If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.