Advertisements
Advertisements
प्रश्न
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
पर्याय
2
1
-1
-2
उत्तर
- 1
\[\text { Suppose the point P divides the line joining the point Q } \left( 2, 2, 1 \right) \text{ and } R \left( 5, 1, - 2 \right) \text{ in the ratio k: 1 } . \]
\[ \text{ Using the section formula, the coordinates of the point of intersection are given by } \]
\[\left( \frac{k\left( 5 \right) + 2}{k + 1}, \frac{k\left( 1 \right) + 2}{k + 1}, \frac{k\left( - 2 \right) + 1}{k + 1} \right)\]
\[\text { It is given that the X - coordinate of P is 4 } . \]
\[ \Rightarrow \frac{k\left( 5 \right) + 2}{k + 1} = 4\]
\[ \Rightarrow 5k + 2 = 4\left( k + 1 \right)\]
\[ \Rightarrow k = 2\]
\[\text{ Now } , \]
\[Z - \text{ coordinate of P } = \frac{k\left( - 2 \right) + 1}{k + 1}\]
\[ = \frac{2\left( - 2 \right) + 1}{2 + 1} \left [ \text{ Substituting k } = 2 \right]\]
\[ = - 1\]
APPEARS IN
संबंधित प्रश्न
Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1
Find the direction cosines of a line which makes equal angles with the coordinate axes.
Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`
If a line has direction ratios 2, −1, −2, determine its direction cosines.
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
Define direction cosines of a directed line.
What are the direction cosines of Z-axis?
Write the distances of the point (7, −2, 3) from XY, YZ and XZ-planes.
A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.
Write the ratio in which the line segment joining (a, b, c) and (−a, −c, −b) is divided by the xy-plane.
Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.
If a unit vector `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with } \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.
For every point P (x, y, z) on the xy-plane,
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines
If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.
Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.
Verify whether the following ratios are direction cosines of some vector or not
`1/sqrt(2), 1/2, 1/2`
Verify whether the following ratios are direction cosines of some vector or not
`4/3, 0, 3/4`
Find the direction cosines of a vector whose direction ratios are
1, 2, 3
Find the direction cosines and direction ratios for the following vector
`hat"j"`
Find the direction cosines and direction ratios for the following vector
`5hat"i" - 3hat"j" - 48hat"k"`
Find the direction cosines and direction ratios for the following vector
`hat"i" - hat"k"`
A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians
If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.
If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.
The d.c's of a line whose direction ratios are 2, 3, –6, are ______.
A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.
The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.