Advertisements
Advertisements
प्रश्न
Find the direction cosines of a vector whose direction ratios are
1, 2, 3
उत्तर
The given direction ratios are a = 1, b = 2, c = 3
If a, b, c are the direction ratios of a vector then the direction cosines of the vector are
l = `"b"/sqrt("a"^2 +"b"^2 + "c"^2)`
m = `"b"/sqrt("a"^2 + "b"^2 + "c"^2)`
c = `"c"/sqrt("a"^2 + "b"^2 +""^2)`
∴ The required direction cosines of thee vector are
`1/sqrt(1^2 + 2^2 + 3^2), 2/sqrt(1^2 + 2^2 + 3^2), 3/sqrt(1^2 + 2^2 + 3^2)`
`1/sqrt(1 + 4 + 9), 2/sqrt(1 + 4 + 9), 3/sqrt(1 + 4 + 9)`
`(1/sqrt(14), 2/sqrt(14), 3/sqrt(14))`
APPEARS IN
संबंधित प्रश्न
Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.
If l1, m1, n1 and l2, m2, n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1, n1l2 − n2l1, l1m2 − l2m1.
If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.
If a line has direction ratios 2, −1, −2, determine its direction cosines.
Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Find the angle between the lines whose direction cosines are given by the equations
l + 2m + 3n = 0 and 3lm − 4ln + mn = 0
Write the distances of the point (7, −2, 3) from XY, YZ and XZ-planes.
If a line makes angles α, β and γ with the coordinate axes, find the value of cos2α + cos2β + cos2γ.
A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
The distance of the point P (a, b, c) from the x-axis is
Find the direction cosines and direction ratios for the following vector
`hat"i" - hat"k"`
Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.
Find the direction cosine of a line which makes equal angle with coordinate axes.
If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.
Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.