Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
The unit vector parallel to the resultant of the vectors `hat"i" + hat"j" - hat"k"` and `hat"i" - 2hat"j" + hat"k"` is
पर्याय
`(hat"i" - hat"j" + hat"k")/sqrt(5)`
`(2hat"i" + hat"j")/sqrt(5)`
`(2hat"i" - hat"j" + hat"k")/sqrt(5)`
`(2hat"i" - hat"j")/sqrt(5)`
उत्तर
`(2hat"i" - hat"j")/sqrt(5)`
APPEARS IN
संबंधित प्रश्न
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
Find the direction cosines of a line which makes equal angles with the coordinate axes.
If a line makes angles of 90°, 60° and 30° with the positive direction of x, y, and z-axis respectively, find its direction cosines
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Define direction cosines of a directed line.
Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).
For every point P (x, y, z) on the x-axis (except the origin),
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
The distance of the point P (a, b, c) from the x-axis is
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
Find the direction cosines of a vector whose direction ratios are
0, 0, 7
Find the direction cosines and direction ratios for the following vector
`3hat"i" + hat"j" + hat"k"`
The x-coordinate of a point on the line joining the points Q(2, 2, 1) and R(5, 1, –2) is 4. Find its z-coordinate.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.
The projections of a vector on the three coordinate axis are 6, –3, 2 respectively. The direction cosines of the vector are ______.
Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.
If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.