Advertisements
Advertisements
Question
Find the direction cosines of a vector whose direction ratios are
1, 2, 3
Solution
The given direction ratios are a = 1, b = 2, c = 3
If a, b, c are the direction ratios of a vector then the direction cosines of the vector are
l = `"b"/sqrt("a"^2 +"b"^2 + "c"^2)`
m = `"b"/sqrt("a"^2 + "b"^2 + "c"^2)`
c = `"c"/sqrt("a"^2 + "b"^2 +""^2)`
∴ The required direction cosines of thee vector are
`1/sqrt(1^2 + 2^2 + 3^2), 2/sqrt(1^2 + 2^2 + 3^2), 3/sqrt(1^2 + 2^2 + 3^2)`
`1/sqrt(1 + 4 + 9), 2/sqrt(1 + 4 + 9), 3/sqrt(1 + 4 + 9)`
`(1/sqrt(14), 2/sqrt(14), 3/sqrt(14))`
APPEARS IN
RELATED QUESTIONS
Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).
Show that the line through points (4, 7, 8) and (2, 3, 4) is parallel to the line through the points (−1, −2, 1) and (1, 2, 5).
Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.
Write the coordinates of the projection of point P (x, y, z) on XOZ-plane.
For every point P (x, y, z) on the x-axis (except the origin),
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
The angle between the two diagonals of a cube is
The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.
Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.
Find the direction cosines and direction ratios for the following vector
`hat"i" - hat"k"`
If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
The d.c's of a line whose direction ratios are 2, 3, –6, are ______.
A line in the 3-dimensional space makes an angle θ `(0 < θ ≤ π/2)` with both the x and y axes. Then the set of all values of θ is the interval ______.
If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.