Advertisements
Advertisements
Question
Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.
Solution
It is given that line passes through the point (2,3,2) and is parallel to the line
`vec("r")=(2hat"i"+3hat"j")+ lambda (2hat"i"-3hat"j" +6hat"k").`
i.e. required line is parallel to the vector `2hat"i" -3hat"j" +6hat"k".`
Equation of the required line is `vec("r")= (2hat"i" + 3hat "j"+2hat"k") +lambda(2hat"i"-3hat"j"+6hat"k")`
The two lines are parallel, we have
`vec("a"_1)=2hat"i"+3hat"j",vec("a"_2)=2hat"i"+3hat"j"+2hat"k"`and`vec("b")=2hat"i"-3hat"j"+6hat"k"`
Therefore, the distance between the lines is given by
`"d"=|(vec("b")xx(vec("a"_2)-vec("a"_1)))/|vec("b")||= ||(hat"i",hat"j",hat"k"),(2,-3,6),(4,0,2)|/sqrt(4+9+36)|`
`=|(-6hat"i"+20hat"j"+12hat"k")/sqrt49|=sqrt580/sqrt49=(2sqrt145)/7`
APPEARS IN
RELATED QUESTIONS
Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........
Write the direction ratios of the following line :
`x = −3, (y−4)/3 =( 2 −z)/1`
If a line has the direction ratios −18, 12, −4, then what are its direction cosines?
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).
If a line has direction ratios 2, −1, −2, determine its direction cosines.
Using direction ratios show that the points A (2, 3, −4), B (1, −2, 3) and C (3, 8, −11) are collinear.
Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.
Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.
Find the distance of the point (2, 3, 4) from the x-axis.
Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(a, b, c) from x-axis.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
For every point P (x, y, z) on the xy-plane,
For every point P (x, y, z) on the x-axis (except the origin),
A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is
The distance of the point P (a, b, c) from the x-axis is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
Find the direction cosines of the line joining the points P(4,3,-5) and Q(-2,1,-8) .
If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.
If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn2
If the directions cosines of a line are k,k,k, then ______.
Find the direction cosine of a line which makes equal angle with coordinate axes.
Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.