English

If y = (log x)x + xlog x, find "dy"/"dx". - Mathematics

Advertisements
Advertisements

Question

If y = (log x)x + xlog x, find `"dy"/"dx".`

Sum

Solution

Let y =(log x)x + xlog x

Also, let u =(log x)x and  v = xlog x

∴ y = u + v

`⇒"dy"/"dx" = "du"/"dx"+"dv"/"dx"` ........(1)

u = (logx)x

⇒ log u = log[(log x)x]

⇒ log u = x log(log x)

Differentiating both sides with respect to x, we obtain

`1/"u" "du"/"dx" ="d"/"dx"("x") xx log(log"x")+"x"."d"/"dx"[log(log"x")]`

`⇒"du"/"dx" = "u"[1xxlog(log"x")+"x". 1/log"x"."d"/"dx"(log"x")]`

`⇒"du"/"dx"=(log"x")^"x"[log(log"x")+"x"/(log"x"). 1/"x"]`

`⇒"du"/"dx"=(log"x")^"x"[log(log"x")+1/(log"x")]`

`⇒"du"/"dx"=(log"x")^"x"[(log(log"x").log"x"+1)/log"x"]`

`⇒"du"/"dx"=(log"x")^("x"-1)[1+log"x".log(log"x")]` .....(2)

v = xlogx

⇒ log v = log(xlogx)

⇒ log v = log  x log x = (log x)2

Differentiating both sides with respect to x, we obtain

`1/"v"."dv"/"dx"="d"/"dx"[(log"x")^2]`

`⇒ 1/"v"."dv"/"dx"=2(log"x")."d"/"dx"(log"x")`

`⇒"dv"/"dx" = 2"v"(log"x"). 1/"x"`

`⇒"dv"/"dx" = 2"x"^(log"x") log"x"/"x"`

`⇒"dv"/"dx"=2"x"^(log"x"-1) . log"x"` ......(3)

Therefore, from (1), (2), and (3), we obtain

`"dy"/"dx" = (log"x")^("x"-1)[1+log"x".log(log"x")]+2"x"^(log"x"-1) .log"x"`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/4/3

RELATED QUESTIONS

Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If ey ( x +1)  = 1, then show that  `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If f(x) = logx (log x) then f'(e) is ______


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


`log [log(logx^5)]`


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


If y = `x^(x^2)`, then `dy/dx` is equal to ______.


The derivative of x2x w.r.t. x is ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


Find `dy/dx`, if y = (log x)x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×