Advertisements
Advertisements
Question
If y = (log x)x + xlog x, find `"dy"/"dx".`
Solution
Let y =(log x)x + xlog x
Also, let u =(log x)x and v = xlog x
∴ y = u + v
`⇒"dy"/"dx" = "du"/"dx"+"dv"/"dx"` ........(1)
u = (logx)x
⇒ log u = log[(log x)x]
⇒ log u = x log(log x)
Differentiating both sides with respect to x, we obtain
`1/"u" "du"/"dx" ="d"/"dx"("x") xx log(log"x")+"x"."d"/"dx"[log(log"x")]`
`⇒"du"/"dx" = "u"[1xxlog(log"x")+"x". 1/log"x"."d"/"dx"(log"x")]`
`⇒"du"/"dx"=(log"x")^"x"[log(log"x")+"x"/(log"x"). 1/"x"]`
`⇒"du"/"dx"=(log"x")^"x"[log(log"x")+1/(log"x")]`
`⇒"du"/"dx"=(log"x")^"x"[(log(log"x").log"x"+1)/log"x"]`
`⇒"du"/"dx"=(log"x")^("x"-1)[1+log"x".log(log"x")]` .....(2)
v = xlogx
⇒ log v = log(xlogx)
⇒ log v = log x log x = (log x)2
Differentiating both sides with respect to x, we obtain
`1/"v"."dv"/"dx"="d"/"dx"[(log"x")^2]`
`⇒ 1/"v"."dv"/"dx"=2(log"x")."d"/"dx"(log"x")`
`⇒"dv"/"dx" = 2"v"(log"x"). 1/"x"`
`⇒"dv"/"dx" = 2"x"^(log"x") log"x"/"x"`
`⇒"dv"/"dx"=2"x"^(log"x"-1) . log"x"` ......(3)
Therefore, from (1), (2), and (3), we obtain
`"dy"/"dx" = (log"x")^("x"-1)[1+log"x".log(log"x")]+2"x"^(log"x"-1) .log"x"`
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If f(x) = logx (log x) then f'(e) is ______
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
`log [log(logx^5)]`
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
The derivative of x2x w.r.t. x is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
Find `dy/dx`, if y = (log x)x.