English

If x = log(1 + t2), y = t – tan–1t,show that dydxdydx=ex-12. - Mathematics and Statistics

Advertisements
Advertisements

Question

If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.

Sum

Solution

x = log(1 + t2), y = t – tan–1t
Differentiating x and y w.r.t. t, we get
`"dx"/"dt" = "d"/"dt"[log(1 + t^2)]`

= `(1)/(1 + t^2)."d"/"dt"(1 - t^2)`

= `(1)/(1 + t^2) xx (0 + 2t)`

= `(2t)/(1 + t^2)`
and
`"dy"/"dt" = "d"/"dt"(t) - "d"/"dt"(tan^-1t)`

= `1 - (1)/(1 + t^2)`

= `(1 + t^2 - 1)/(1 + t^2)`

= `t^2/(1 + t2)`

∴ `"dy"/"dx" = (("dy"/"dt"))/(("dx"/"dt")`

= `(((t2)/(1 + t^2)))/(((2t)/(1 + t^2))`

= `t/(2)`
Now, x = log (1 + t2)
∴  1 + t2 = ex
∴  t2 = ex - 1
∴  t = `sqrt(e^x - 1)`
∴  `"dy"/"dx" = sqrt(e^x - 1)/(2)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.4 [Page 48]

RELATED QUESTIONS

Differentiate the following function with respect to x: `(log x)^x+x^(logx)`


 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Find `dy/dx`for the function given in the question:

xy + yx = 1


Find `dy/dx` for the function given in the question:

yx = xy


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


Find `(d^2y)/(dx^2)` , if y = log x


Find `"dy"/"dx"` if y = xx + 5x


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


Differentiate 3x w.r.t. logx3.


Find the nth derivative of the following : log (2x + 3)


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If f(x) = logx (log x) then f'(e) is ______


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


`d/dx(x^{sinx})` = ______ 


Derivative of `log_6`x with respect 6x to is ______


`log (x + sqrt(x^2 + "a"))`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


The derivative of log x with respect to `1/x` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×