English

If y=eacos-1x, -1 <= x <= 1 show that (1-x2)d2ydx2-xdydx-a2y=0 - Mathematics

Advertisements
Advertisements

Question

If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`

Sum

Solution

y = `e^(a cos^(-1)x)`

On differentiating with respect to x,

`dy/dx = e^(a cos^(-1)x) d/dx a cos^-1 x`

`= e^(a cos^(-1)x) (- a)/sqrt(1 - x^2) = (- ay)/(sqrt(1 - x^2))`

On multiplying by `sqrt(1 - x^2)`,

`=> sqrt(1 - x^2) dy/dx` = - ay

On squaring,

`(dy/dx)^2 (1 - x^2) = a^2y^2`

Differentiating again with respect to x,

`=> 2 (dy/dx) (d^2y)/dx^2 (1 - x^2) + (dy/dx)^2  (- 2x) = 2a^2 y dy/dx`

Dividing by `2 dy/dx`,

`(d^2y)/dx^2 (1 - x^2) - x dy/dx = a^2 y`

Hence, `(1 - x^2) (d^2y)/dx^2 - x(dy/dx) - a^2 y = 0`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.9 [Page 192]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.9 | Q 23 | Page 192

RELATED QUESTIONS

Differentiate the following function with respect to x: `(log x)^x+x^(logx)`


 

if xx+xy+yx=ab, then find `dy/dx`.


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


Find `dy/dx` if y = x+ 5x


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


Differentiate 3x w.r.t. logx3.


Find the second order derivatives of the following : log(logx)


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


Derivative of `log_6`x with respect 6x to is ______


`8^x/x^8`


`log (x + sqrt(x^2 + "a"))`


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×