English

If x7 . y5 = (x + y)12, show that dydx=yx - Mathematics and Statistics

Advertisements
Advertisements

Question

If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`

Sum

Solution

x7 . y5 = (x + y)12 

Taking log on both sides, we get

log(x7y5) = log(x + y)12

∴ 7log x + 5log y = 12log(x + y)

Differentiating w. r. t. x, we get

`7/x + 5/y* ("d"y)/("d"x) = 12/(x + y)*"d"/("d"x)(x + y)`

∴  `7/x + 5/y*("d"y)/("d"x) = 12/(x + y)(1 + ("d"y)/("d"x))`

∴ `("d"y)/("d"x)(5/y - 12/(x + y)) = 12/(x + y) - 7/x`

∴ `("d"y)/("d"x)((5x - 7y)/(y(x + y))) = (5x - 7y)/(x(x + y))`

∴ `("d"y)/("d"x) = y/x`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.1: Differentiation - Long Answers III

RELATED QUESTIONS

Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Find `dy/dx` for the function given in the question:

`xy = e^((x – y))`


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(d^2y)/(dx^2)` , if y = log x


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


Find the second order derivatives of the following : x3.logx


Find the second order derivatives of the following : log(logx)


If f(x) = logx (log x) then f'(e) is ______


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


`8^x/x^8`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


The derivative of log x with respect to `1/x` is ______.


Find `dy/dx`, if y = (log x)x.


Evaluate:

`int log x dx`


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×