English

If f(x) = logx (log x) then f'(e) is ______ - Mathematics and Statistics

Advertisements
Advertisements

Question

If f(x) = logx (log x) then f'(e) is ______

Options

  • 1

  • e

  • `1/"e"`

  • 0

MCQ
Fill in the Blanks

Solution

`1/"e"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.1: Differentiation - MCQ

RELATED QUESTIONS

Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`


Find `dy/dx` for the function given in the question:

`xy = e^((x – y))`


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


Differentiate 3x w.r.t. logx3.


Find the second order derivatives of the following : x3.logx


If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


Find the nth derivative of the following : log (2x + 3)


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


Derivative of loge2 (logx) with respect to x is _______.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


Derivative of `log_6`x with respect 6x to is ______


`log [log(logx^5)]`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


If y = `x^(x^2)`, then `dy/dx` is equal to ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


The derivative of x2x w.r.t. x is ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


If y = `9^(log_3x)`, find `dy/dx`.


Evaluate:

`int log x dx`


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×