English

Differentiate the function with respect to x. (xcosx)x+(xsinx)1x - Mathematics

Advertisements
Advertisements

Question

Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`

Sum

Solution

Let, `y =(x cos x)^x + (x sin x)^(1/x)`

Differentiating both sides with respect to x,

`dy/dx = (du)/dx + (dv)/dx`         ...(1)

Now, u = (x cos x)x

Taking logarithm of both sides,

log u = log (x cos x)x = x log (x cos x)

Differentiating both sides with respect to x,

`1/u (du)/dx = x d/dx log (x cos x) + log (x cos x) d/dx (x)`

`= x * 1/(x cos x) d/dx (x cos x) + log (x cos x) xx 1`

`= 1/(cos x) [x d/dx cos x + cos x d/dx (x)] + log (x cos x)`

`1/(cos x) [x (- sin x) + cos x xx (1)] + log (x cos x)`     ...`[because log_"e" "mn" = log_"e"  "m"+ log_"e" "n"]`

`= - x (sin x)/(cos x) + (cos x)/(cos x)` + log x + log cos x

= - x tan x + 1 + log x + log cos x

`therefore (du)/dx` = u [1 - x tan x + log x + log cos x]

= (x cos x)x [ 1 - x tan x + log x + log cos x]           ...(2)

and `v = (x sin x)^(1/x)`

Taking logarithm of both sides,

log v = log (x sin x)1/x = `1/x` log (x sin x)

`1/v (dv)/dx = 1/x d/dx log (x sin x) + log (x sin x) d/dx 1/x`

`= 1/x 1/(x sin x) * d/dx (x sin x) + log (x sin x) (-1) x^-2`

`= 1/(x^2 sin x) [x d/dx sin x + sin x d/dx (x)] + (log x + log sin x)(-1) x^-2`

`= 1/(x^2 sin x)` [x cos x + sin x] `- 1/x^2  log x - 1/x^2  log sin x`

`= 1/x^2` [1 + x cot x - log (x sin x)]

`therefore (dv)/dx = v * 1/x^2` [1 + x cot x - log (x sin x)]

`= ((x sin x)^(1/x))/x^2` [1 + x cot x - log (x sin x)]                ...(3)

Putting the value of `(du)/dx` from equation (2) and `(dv)/dx` from (3) in equation (1),

`= (x cos x)^x [log (x log x) - x tan x + 1] + ((x sin x)^(1/x))/x^2 [1 + x cot x - log (x sin x)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.5 [Page 178]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.5 | Q 11 | Page 178

RELATED QUESTIONS

Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Find `dy/dx` for the function given in the question:

`xy = e^((x – y))`


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Evaluate 
`int  1/(16 - 9x^2) dx`


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


Find `(d^2y)/(dx^2)` , if y = log x


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


Find `"dy"/"dx"` if y = xx + 5x


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


Differentiate 3x w.r.t. logx3.


Find the second order derivatives of the following : x3.logx


Find the second order derivatives of the following : log(logx)


If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×