English

If cos y = x cos (a + y), with cos a ≠ ± 1, prove that dydx=cos2(a+y)sina - Mathematics

Advertisements
Advertisements

Question

If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`

Sum

Solution

cos y = x cos (a + y)

`therefore x = (cos y)/(cos (a + y))`

On differentiating with respect to y,

`cos (a + y) d/dy cos y - cos y d/dy`

`therefore dx/dy = (cos (a + y))/(cos^2 (a + y))`

`= (- sin y cos (a + y) + cos y sin (a + y))/(cos^2 (a + y))`

`= (sin (a + y) cos y - cos (a + y) sin y)/(cos^2 (a + y))`

`= (sin (a + y - y))/(cos^2 (a + y))`   ... [∵ sin (A-B) = sin A  cos B - cos A sin B]

`= (sin a)/(cos^2  (a + y))`

`therefore dy/dx = (cos^2 (a + y))/(sin a)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.9 [Page 192]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.9 | Q 16 | Page 192

RELATED QUESTIONS

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find `dy/dx` for the function given in the question:

yx = xy


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


If ey ( x +1)  = 1, then show that  `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `dy/dx` if y = x+ 5x


Find `(d^2y)/(dx^2)` , if y = log x


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


Differentiate 3x w.r.t. logx3.


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If f(x) = logx (log x) then f'(e) is ______


Derivative of loge2 (logx) with respect to x is _______.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


`"d"/"dx" [(cos x)^(log x)]` = ______.


Derivative of `log_6`x with respect 6x to is ______


`2^(cos^(2_x)`


`8^x/x^8`


`log (x + sqrt(x^2 + "a"))`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


The derivative of x2x w.r.t. x is ______.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


If y = `9^(log_3x)`, find `dy/dx`.


The derivative of log x with respect to `1/x` is ______.


Find `dy/dx`, if y = (log x)x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×