Advertisements
Advertisements
Question
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
Solution
cos y = x cos (a + y)
`therefore x = (cos y)/(cos (a + y))`
On differentiating with respect to y,
`cos (a + y) d/dy cos y - cos y d/dy`
`therefore dx/dy = (cos (a + y))/(cos^2 (a + y))`
`= (- sin y cos (a + y) + cos y sin (a + y))/(cos^2 (a + y))`
`= (sin (a + y) cos y - cos (a + y) sin y)/(cos^2 (a + y))`
`= (sin (a + y - y))/(cos^2 (a + y))` ... [∵ sin (A-B) = sin A cos B - cos A sin B]
`= (sin a)/(cos^2 (a + y))`
`therefore dy/dx = (cos^2 (a + y))/(sin a)`
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx` for the function given in the question:
yx = xy
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `dy/dx` if y = xx + 5x
Find `(d^2y)/(dx^2)` , if y = log x
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
Differentiate 3x w.r.t. logx3.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If f(x) = logx (log x) then f'(e) is ______
Derivative of loge2 (logx) with respect to x is _______.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`"d"/"dx" [(cos x)^(log x)]` = ______.
Derivative of `log_6`x with respect 6x to is ______
`2^(cos^(2_x)`
`8^x/x^8`
`log (x + sqrt(x^2 + "a"))`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
The derivative of x2x w.r.t. x is ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.