Advertisements
Advertisements
Question
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
Solution
log (x + y) = log(xy) + p
∴ log( x + y) = logx + logy + p
Differentiating both sides w.r.t. x, we get
`(1)/(x + y)."d"/"dx"(x + y) = (1)/x + (1)/y."dy"/"dx" + 0`
∴ `(1)/(x + y)(1 + "dy"/"dx") = (1)/x + (1)/y."dy"/"dx"`
∴ `(1)/(x + y) + (1)/(x + y)."dy"/"dx" = (1)/x + (1)/y."dy"/"dx"`
∴ `(1/(x + y) - 1/y)"dy"/"dx" = (1)/x - (1)/(x + y)`
∴ `[(y - x - y)/(y(x + y))]"dy"/"dx" = (x + y - x)/(x(x + y)`
∴ `[(-x)/(y(x + y))]"dy"/"dx" = y/(x(x + y)`
∴ `(-x/y)"dy"/"dx" = y/x`
∴ `"dy"/"dx" = -y^2/x^2`.
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If y = (log x)x + xlog x, find `"dy"/"dx".`
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : x3.logx
Find the nth derivative of the following : log (ax + b)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If f(x) = logx (log x) then f'(e) is ______
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`"d"/"dx" [(cos x)^(log x)]` = ______.
`2^(cos^(2_x)`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.
Evaluate:
`int log x dx`
Find the derivative of `y = log x + 1/x` with respect to x.