English

If log (x + y) = log(xy) + p, where p is a constant, then prove that dydxdydx=-y2x2. - Mathematics and Statistics

Advertisements
Advertisements

Question

If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.

Sum

Solution

log (x + y) = log(xy) + p
∴ log( x + y) = logx + logy + p
Differentiating both sides w.r.t. x, we get
`(1)/(x + y)."d"/"dx"(x + y) = (1)/x + (1)/y."dy"/"dx" + 0`

∴ `(1)/(x + y)(1 + "dy"/"dx") = (1)/x + (1)/y."dy"/"dx"`

∴ `(1)/(x + y) + (1)/(x + y)."dy"/"dx" = (1)/x + (1)/y."dy"/"dx"`

∴ `(1/(x + y) - 1/y)"dy"/"dx" = (1)/x - (1)/(x + y)`

∴ `[(y - x - y)/(y(x + y))]"dy"/"dx" = (x + y - x)/(x(x + y)`

∴ `[(-x)/(y(x + y))]"dy"/"dx" = y/(x(x + y)`

∴ `(-x/y)"dy"/"dx" = y/x`

∴ `"dy"/"dx" = -y^2/x^2`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.3 [Page 40]

RELATED QUESTIONS

Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If y = (log x)x + xlog x, find `"dy"/"dx".`


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


Differentiate 3x w.r.t. logx3.


Find the second order derivatives of the following : x3.logx


Find the nth derivative of the following : log (ax + b)


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If f(x) = logx (log x) then f'(e) is ______


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


`"d"/"dx" [(cos x)^(log x)]` = ______.


`2^(cos^(2_x)`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


If y = `9^(log_3x)`, find `dy/dx`.


The derivative of log x with respect to `1/x` is ______.


Evaluate:

`int log x dx`


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×