English

Differentiate w.r.t. x the function: xx + xa + ax + aa, for some fixed a > 0 and x > 0 - Mathematics

Advertisements
Advertisements

Question

Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0

Sum

Solution

Let, y = xx + xa + ax + aa

On differentiating with respect to x,

`dy/dx = d/dx (x^x) + d/dx (x^a) + d/dx (a^x) + (a^a) d/dx (1)`

`= d/dx (x^x) + ax^(a - 1) + a^x log a + 0`          ...(1)

u = xx    (let)

Taking log on both sides,

log u = x log x

On differentiating with respect to x,

`1/u (du)/dx = x d/dx log x + log x d/dx (x)`

`= x * 1/x + log x = (1 + log x)`

`therefore (du)/dx = u (1 + log x) = x^x (1 + log x)`

i.e. `d/dx  (x^x) = (du)/dx = x^x (1 + log x)`

Putting the value of `d/dx (x^x)` in equation (1),

`dy/dx = x^x (1 + log x) + ax^(a - 1) + a^x  log a`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.9 [Page 191]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.9 | Q 10 | Page 191

RELATED QUESTIONS

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Find `dy/dx` for the function given in the question:

yx = xy


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Evaluate 
`int  1/(16 - 9x^2) dx`


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


Find `(d^2y)/(dx^2)` , if y = log x


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.


Find the second order derivatives of the following : x3.logx


If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


Find the nth derivative of the following : log (ax + b)


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


Derivative of loge2 (logx) with respect to x is _______.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


The derivative of x2x w.r.t. x is ______.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×