Advertisements
Advertisements
Question
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Solution
It is given that:
`y=log[x+sqrt(x^2+a^2)]`
Differentiating equation (1) with respect to x, we get
`dy/dx=(1+x/sqrt(x^2+a^2))/(x+sqrt(x^2+a^2))`
`dy/dx=1/sqrt(x^2+a^2)..........(2)`
`xdy/dx=x/sqrt(x^2+a^2)...........(3)`
Again differentiating equation (2) with respect to x, we get
`(d^2y)/(dx^2)=-x/(x^2+a^2)^(3/2)`
`(x^2+y^2)(d^2y)/(dx^2)=-x/sqrt(x^2+a^2)..............(4)`
Adding equation (3) and (4), we get
`(x^2+y^2)(d^2y)/(dx^2)+xdy/dx=-x/sqrt(x^2+a^2)+x/sqrt(x^2+a^2)=0`
`(x^2+y^2)(d^2y)/(dx^2)+xdy/dx=0`
APPEARS IN
RELATED QUESTIONS
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Find the nth derivative of the following : log (ax + b)
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
Derivative of loge2 (logx) with respect to x is _______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
Derivative of `log_6`x with respect 6x to is ______
`2^(cos^(2_x)`
`log [log(logx^5)]`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
The derivative of log x with respect to `1/x` is ______.
Evaluate:
`int log x dx`
Find the derivative of `y = log x + 1/x` with respect to x.