Advertisements
Advertisements
Question
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
Solution
(3xy + y2) dx + (x2 + xy) dy = 0
`(dy)/(dx) = - ((3xy + y^2)/(x^2 + xy))`
Put y = vx ⇒ `(dy)/(dx) = v + x (dv)/(dx)`
`v + x (dv)/(dx) = - ((3x . vx + v^2 x^2)/(x^2 + x . vx))`
` x (dv)/(dx) = (-3v - v^2)/(1 + v) - v`
` x (dv)/(dx) = (-3v - v^2 - v - v^2)/(1 + v) `
` x (dv)/(dx) = (-2v^2 - 4v)/(1 + v)`
`(1 + v)/(2v^2 + 4v) "dv" = -(1)/(x) "dx"`
` int_ (1 + v)/(2v^2 + 4v) "dv" = int_ -(1)/(x) "dx"`
` 1/4 int_ (2 + 2v)/(2v + v^2) "dv" = - int_ (1)/(x) "dx"`
`1/4 log | v^2 + 2v| = - log | x | + c`
`1/4 log ((y^2)/(x^2) + 2 (y)/(x)) . x = c `
`log ((y^2)/(x) + 2y) = 4c`
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx` for the function given in the question:
yx = xy
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `"dy"/"dx"` if y = xx + 5x
If y = (log x)x + xlog x, find `"dy"/"dx".`
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
Find the second order derivatives of the following : x3.logx
Find the nth derivative of the following : log (ax + b)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
The derivative of x2x w.r.t. x is ______.