English

Differentiate the function with respect to x. xsin x + (sin x)cos x - Mathematics

Advertisements
Advertisements

Question

Differentiate the function with respect to x.

xsin x + (sin x)cos x

Sum

Solution

Let, xsin x + (sin x)cos x

Again, let y = u + v

Differentiating both sides with respect to x,

`(dy)/dx = (du)/dx + (dv)/dx`    ...(1)

अब, u = xsin x

Taking logarithm of both sides,

log u = log xsin x = sin x log x

On differentiating both sides with respect to,

`1/u du/dx = sin x d/dx log x + log x d/dx sin x`

 = `sin x . 1/x + log x * cos x = cos x log x + sin x/x`

`therefore (du)/dx = u (cos x log x + (sin x)/x) = x^(sin x) (cos x log x + (sin x)/x)`   ....(2)

and v = (sin x)cos x

Taking logarithm of both sides,

log v = log (sin x)cos x = cos x log sin x

On differentiating both sides with respect to,

`1/v (dv)/dx = cos x  d/dx log sin x + log sin x  d/dx  cos x`

`= cos x * 1/(sin x) d/dx  sin x + log sin x * (- sin x)`

`= cos x * 1/sin x * cos x - sin x log sin x`

`= - sin x log sin x + cot x * cos x`

`therefore dv/dx = v [-sin x log sin x + cot x cos x]`

`= (sin x)^(cos x) [-sin x log sin x + cot x cos x]`          ....(3)

Putting the values ​​of `(du)/dx` and `(dv)/dx` from equations (2) and (3) in equation (1), we get,

`therefore dy/dx = (du)/dx + (dv)/dx`

`= x^(sin x) (cos x log x + sin x/x) + (sin x)^(cos x) [- sin x log sin x +cot x cos x]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.5 [Page 178]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.5 | Q 9 | Page 178

RELATED QUESTIONS

 

if xx+xy+yx=ab, then find `dy/dx`.


Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Find `dy/dx` for the function given in the question:

yx = xy


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `dy/dx` if y = x+ 5x


Find `(d^2y)/(dx^2)` , if y = log x


If y = (log x)x + xlog x, find `"dy"/"dx".`


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


Find the second order derivatives of the following : x3.logx


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If f(x) = logx (log x) then f'(e) is ______


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


`d/dx(x^{sinx})` = ______ 


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


Derivative of `log_6`x with respect 6x to is ______


`8^x/x^8`


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


If y = `9^(log_3x)`, find `dy/dx`.


The derivative of log x with respect to `1/x` is ______.


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×