Advertisements
Advertisements
Question
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Solution
Let, xsin x + (sin x)cos x
Again, let y = u + v
Differentiating both sides with respect to x,
`(dy)/dx = (du)/dx + (dv)/dx` ...(1)
अब, u = xsin x
Taking logarithm of both sides,
log u = log xsin x = sin x log x
On differentiating both sides with respect to,
`1/u du/dx = sin x d/dx log x + log x d/dx sin x`
= `sin x . 1/x + log x * cos x = cos x log x + sin x/x`
`therefore (du)/dx = u (cos x log x + (sin x)/x) = x^(sin x) (cos x log x + (sin x)/x)` ....(2)
and v = (sin x)cos x
Taking logarithm of both sides,
log v = log (sin x)cos x = cos x log sin x
On differentiating both sides with respect to,
`1/v (dv)/dx = cos x d/dx log sin x + log sin x d/dx cos x`
`= cos x * 1/(sin x) d/dx sin x + log sin x * (- sin x)`
`= cos x * 1/sin x * cos x - sin x log sin x`
`= - sin x log sin x + cot x * cos x`
`therefore dv/dx = v [-sin x log sin x + cot x cos x]`
`= (sin x)^(cos x) [-sin x log sin x + cot x cos x]` ....(3)
Putting the values of `(du)/dx` and `(dv)/dx` from equations (2) and (3) in equation (1), we get,
`therefore dy/dx = (du)/dx + (dv)/dx`
`= x^(sin x) (cos x log x + sin x/x) + (sin x)^(cos x) [- sin x log sin x +cot x cos x]`
APPEARS IN
RELATED QUESTIONS
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Find `dy/dx` for the function given in the question:
yx = xy
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `dy/dx` if y = xx + 5x
Find `(d^2y)/(dx^2)` , if y = log x
If y = (log x)x + xlog x, find `"dy"/"dx".`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
Find the second order derivatives of the following : x3.logx
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If f(x) = logx (log x) then f'(e) is ______
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`d/dx(x^{sinx})` = ______
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
Derivative of `log_6`x with respect 6x to is ______
`8^x/x^8`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.
Find the derivative of `y = log x + 1/x` with respect to x.