English

Differentiate the function with respect to x. cos x . cos 2x . cos 3x - Mathematics

Advertisements
Advertisements

Question

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x

Sum

Solution

Let, y = cos x · cos 2x · cos 3x           …(1)

Taking logarithm of both the sides,

log y = log (cos x · cos2x · cos 3x)

= log cos x + log cos 2 x + log cos 3x
    ....[∵ log m · n = log m + log n]

Differentiating both sides with respect to x,

`1/y dy/dx = d/dx log cos x + d/dx log cos 2  x + d/dx log cos 3 x`

`1/y  dy/dx = 1/(cos x) d/dx cos x + 1/(cos  2  x) d/dx cos  2 x _ 1/(cos  3  x) d/dx cos  3  x`

`= 1/cos x (- sin x) + 1/(cos  2 x) (- sin  2 x) d/dx (2x) + 1/(cos  3 x) (- sin  3 x) d/dx (3x)`

`= - sin/cos x - (sin  2 x)/(cos  2 x) (2) - (sin  3 x)/(cos  3 x) (3)`

`= - tan x - 2  tan  2 x  - 3  tan  3 x  = - (tan x  + 2 tan 2x  + 3  tan 3 x )`

`therefore dy/dx = - y (tan x  + 2 tan  2 x  + 3  tan  3 x)`

Putting the value of y from equation (1)

`dy/dx = - cos x * cos  2  x * cos  3  x [tan x + 2  tan  2  x  + 3  tan  3  x]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.5 [Page 178]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.5 | Q 1 | Page 178

RELATED QUESTIONS

Differentiate the following function with respect to x: `(log x)^x+x^(logx)`


Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

(log x)x + xlog x


Find `dy/dx`for the function given in the question:

xy + yx = 1


Find `dy/dx` for the function given in the question:

yx = xy


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


If ey ( x +1)  = 1, then show that  `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`


Find `dy/dx` if y = x+ 5x


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If y = (log x)x + xlog x, find `"dy"/"dx".`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.


If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


Find the nth derivative of the following : log (2x + 3)


If f(x) = logx (log x) then f'(e) is ______


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


Derivative of loge2 (logx) with respect to x is _______.


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


`"d"/"dx" [(cos x)^(log x)]` = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


`log (x + sqrt(x^2 + "a"))`


Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


Find `dy/dx`, if y = (log x)x.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×