Advertisements
Advertisements
Question
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Solution
Let, y = cos x · cos 2x · cos 3x …(1)
Taking logarithm of both the sides,
log y = log (cos x · cos2x · cos 3x)
= log cos x + log cos 2 x + log cos 3x
....[∵ log m · n = log m + log n]
Differentiating both sides with respect to x,
`1/y dy/dx = d/dx log cos x + d/dx log cos 2 x + d/dx log cos 3 x`
`1/y dy/dx = 1/(cos x) d/dx cos x + 1/(cos 2 x) d/dx cos 2 x _ 1/(cos 3 x) d/dx cos 3 x`
`= 1/cos x (- sin x) + 1/(cos 2 x) (- sin 2 x) d/dx (2x) + 1/(cos 3 x) (- sin 3 x) d/dx (3x)`
`= - sin/cos x - (sin 2 x)/(cos 2 x) (2) - (sin 3 x)/(cos 3 x) (3)`
`= - tan x - 2 tan 2 x - 3 tan 3 x = - (tan x + 2 tan 2x + 3 tan 3 x )`
`therefore dy/dx = - y (tan x + 2 tan 2 x + 3 tan 3 x)`
Putting the value of y from equation (1)
`dy/dx = - cos x * cos 2 x * cos 3 x [tan x + 2 tan 2 x + 3 tan 3 x]`
APPEARS IN
RELATED QUESTIONS
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
(log x)x + xlog x
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
yx = xy
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Find `dy/dx` if y = xx + 5x
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (2x + 3)
If f(x) = logx (log x) then f'(e) is ______
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
Derivative of loge2 (logx) with respect to x is _______.
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`log (x + sqrt(x^2 + "a"))`
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
Find `dy/dx`, if y = (log x)x.
If xy = yx, then find `dy/dx`