Advertisements
Advertisements
प्रश्न
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
उत्तर
Let, y = cos x · cos 2x · cos 3x …(1)
Taking logarithm of both the sides,
log y = log (cos x · cos2x · cos 3x)
= log cos x + log cos 2 x + log cos 3x
....[∵ log m · n = log m + log n]
Differentiating both sides with respect to x,
`1/y dy/dx = d/dx log cos x + d/dx log cos 2 x + d/dx log cos 3 x`
`1/y dy/dx = 1/(cos x) d/dx cos x + 1/(cos 2 x) d/dx cos 2 x _ 1/(cos 3 x) d/dx cos 3 x`
`= 1/cos x (- sin x) + 1/(cos 2 x) (- sin 2 x) d/dx (2x) + 1/(cos 3 x) (- sin 3 x) d/dx (3x)`
`= - sin/cos x - (sin 2 x)/(cos 2 x) (2) - (sin 3 x)/(cos 3 x) (3)`
`= - tan x - 2 tan 2 x - 3 tan 3 x = - (tan x + 2 tan 2x + 3 tan 3 x )`
`therefore dy/dx = - y (tan x + 2 tan 2 x + 3 tan 3 x)`
Putting the value of y from equation (1)
`dy/dx = - cos x * cos 2 x * cos 3 x [tan x + 2 tan 2 x + 3 tan 3 x]`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx` for the function given in the question:
yx = xy
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `dy/dx` if y = xx + 5x
Find `(d^2y)/(dx^2)` , if y = log x
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
Find the second order derivatives of the following : x3.logx
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
`"d"/"dx" [(cos x)^(log x)]` = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
Derivative of `log_6`x with respect 6x to is ______
`log (x + sqrt(x^2 + "a"))`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
The derivative of x2x w.r.t. x is ______.
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`