Advertisements
Advertisements
प्रश्न
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
उत्तर
x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ)`
∴ `x/a = sqrt(secθ - tanθ), y/a = sqrt(secθ + tanθ)`
∴ `sec θ - tanθ = x^2/a^2` ...(1)
`sec θ + tanθ = y^2/a^2` ...(2)
Adding (1) and (2), we get
2secθ = `x^2/a^2 + y^2/a^2`
= `(x^2 + y^2)/a^2`
∴ secθ = `(x^2 + y^2)/(2a^2)`
Subtracting (1) from (2), we get
2tanθ = `y^2/a^2 - x^2/a^2`
= `(y^2 - x^2)/a^2`
∴ tanθ = `(y^2 - x^2)/(2a^2)`
∴ sec2θ - tan2θ = 1 gives,
`((x^2 + y^2)/(2a^2))^2 - ((y^2 - x^2)/(2a^2))^2` = 1
∴ (x2 + y2)2 - (y2 - x2)2 = 4a4
∴ (x4 + 2x2y2 + y4) - (y4 - 2x2y2 + x4) = 4a4
∴ 4x2y2 = 4a4
∴ x2y2 = a4
Differentiating both sides w.r.t. x, we get
`x^2."d"/"dx"(y^2) + y^2."d"/"dx"(x^2)` = 0
∴ `x^2 xx 2y"dy"/"dx" + y^2 xx 2x` = 0
∴ `2x^2y"dy"/"dx"` = -2xy2
∴ `"dy"/"dx" = -y/x`.
APPEARS IN
संबंधित प्रश्न
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `(d^2y)/(dx^2)` , if y = log x
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Find the nth derivative of the following : log (2x + 3)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`"d"/"dx" [(cos x)^(log x)]` = ______.
Derivative of `log_6`x with respect 6x to is ______
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
Evaluate:
`int log x dx`