Advertisements
Advertisements
प्रश्न
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
उत्तर
xy = ex-y
Taking logarithm of both the sides
y log x = (x - y) log e
= x - y ...(1)
Diff. both the sides w.r.t. x ,
`"y".1/"x" + "log x" . "dy"/"dx" = 1 - "dy"/"dx"`
`therefore "log x" . "dy"/"dx" + "dy"/"dx" = 1 - "y"/"x"`
`therefore (1 + "log x") "dy"/"dx" = ("x - y")/"x"`
`therefore (1 + "log x") "dy"/dx"= (ylogx)/x` ...[by (1)]
`"dy"/"dx" = ("y log x")/("x" . (1 + "log x"))`
`= ("log x")/(1 + "log x")^2`
`[because "from (1)" "y"/"x" = 1/(1 + "log x")]`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Find the nth derivative of the following : log (ax + b)
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
`d/dx(x^{sinx})` = ______
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
The derivative of x2x w.r.t. x is ______.
Evaluate:
`int log x dx`