Advertisements
Advertisements
प्रश्न
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
उत्तर
Let, `y =(x cos x)^x + (x sin x)^(1/x)`
Differentiating both sides with respect to x,
`dy/dx = (du)/dx + (dv)/dx` ...(1)
Now, u = (x cos x)x
Taking logarithm of both sides,
log u = log (x cos x)x = x log (x cos x)
Differentiating both sides with respect to x,
`1/u (du)/dx = x d/dx log (x cos x) + log (x cos x) d/dx (x)`
`= x * 1/(x cos x) d/dx (x cos x) + log (x cos x) xx 1`
`= 1/(cos x) [x d/dx cos x + cos x d/dx (x)] + log (x cos x)`
`1/(cos x) [x (- sin x) + cos x xx (1)] + log (x cos x)` ...`[because log_"e" "mn" = log_"e" "m"+ log_"e" "n"]`
`= - x (sin x)/(cos x) + (cos x)/(cos x)` + log x + log cos x
= - x tan x + 1 + log x + log cos x
`therefore (du)/dx` = u [1 - x tan x + log x + log cos x]
= (x cos x)x [ 1 - x tan x + log x + log cos x] ...(2)
and `v = (x sin x)^(1/x)`
Taking logarithm of both sides,
log v = log (x sin x)1/x = `1/x` log (x sin x)
`1/v (dv)/dx = 1/x d/dx log (x sin x) + log (x sin x) d/dx 1/x`
`= 1/x 1/(x sin x) * d/dx (x sin x) + log (x sin x) (-1) x^-2`
`= 1/(x^2 sin x) [x d/dx sin x + sin x d/dx (x)] + (log x + log sin x)(-1) x^-2`
`= 1/(x^2 sin x)` [x cos x + sin x] `- 1/x^2 log x - 1/x^2 log sin x`
`= 1/x^2` [1 + x cot x - log (x sin x)]
`therefore (dv)/dx = v * 1/x^2` [1 + x cot x - log (x sin x)]
`= ((x sin x)^(1/x))/x^2` [1 + x cot x - log (x sin x)] ...(3)
Putting the value of `(du)/dx` from equation (2) and `(dv)/dx` from (3) in equation (1),
`= (x cos x)^x [log (x log x) - x tan x + 1] + ((x sin x)^(1/x))/x^2 [1 + x cot x - log (x sin x)]`
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `dy/dx` if y = xx + 5x
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : log(logx)
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (ax + b)
Find the nth derivative of the following : log (2x + 3)
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
`d/dx(x^{sinx})` = ______
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`