मराठी

Differentiate the function with respect to x. (xcosx)x+(xsinx)1x - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`

बेरीज

उत्तर

Let, `y =(x cos x)^x + (x sin x)^(1/x)`

Differentiating both sides with respect to x,

`dy/dx = (du)/dx + (dv)/dx`         ...(1)

Now, u = (x cos x)x

Taking logarithm of both sides,

log u = log (x cos x)x = x log (x cos x)

Differentiating both sides with respect to x,

`1/u (du)/dx = x d/dx log (x cos x) + log (x cos x) d/dx (x)`

`= x * 1/(x cos x) d/dx (x cos x) + log (x cos x) xx 1`

`= 1/(cos x) [x d/dx cos x + cos x d/dx (x)] + log (x cos x)`

`1/(cos x) [x (- sin x) + cos x xx (1)] + log (x cos x)`     ...`[because log_"e" "mn" = log_"e"  "m"+ log_"e" "n"]`

`= - x (sin x)/(cos x) + (cos x)/(cos x)` + log x + log cos x

= - x tan x + 1 + log x + log cos x

`therefore (du)/dx` = u [1 - x tan x + log x + log cos x]

= (x cos x)x [ 1 - x tan x + log x + log cos x]           ...(2)

and `v = (x sin x)^(1/x)`

Taking logarithm of both sides,

log v = log (x sin x)1/x = `1/x` log (x sin x)

`1/v (dv)/dx = 1/x d/dx log (x sin x) + log (x sin x) d/dx 1/x`

`= 1/x 1/(x sin x) * d/dx (x sin x) + log (x sin x) (-1) x^-2`

`= 1/(x^2 sin x) [x d/dx sin x + sin x d/dx (x)] + (log x + log sin x)(-1) x^-2`

`= 1/(x^2 sin x)` [x cos x + sin x] `- 1/x^2  log x - 1/x^2  log sin x`

`= 1/x^2` [1 + x cot x - log (x sin x)]

`therefore (dv)/dx = v * 1/x^2` [1 + x cot x - log (x sin x)]

`= ((x sin x)^(1/x))/x^2` [1 + x cot x - log (x sin x)]                ...(3)

Putting the value of `(du)/dx` from equation (2) and `(dv)/dx` from (3) in equation (1),

`= (x cos x)^x [log (x log x) - x tan x + 1] + ((x sin x)^(1/x))/x^2 [1 + x cot x - log (x sin x)]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity and Differentiability - Exercise 5.5 [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 5 Continuity and Differentiability
Exercise 5.5 | Q 11 | पृष्ठ १७८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Differentiate the following function with respect to x: `(log x)^x+x^(logx)`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If ey ( x +1)  = 1, then show that  `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `dy/dx` if y = x+ 5x


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


Differentiate 3x w.r.t. logx3.


Find the second order derivatives of the following : log(logx)


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


Find the nth derivative of the following : log (ax + b)


Find the nth derivative of the following : log (2x + 3)


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


`d/dx(x^{sinx})` = ______ 


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


Find `dy/dx`, if y = (log x)x.


Evaluate:

`int log x dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×