Advertisements
Advertisements
प्रश्न
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function `(sin x)^x + sin^(-1) sqrtx` with respect to x
उत्तर
Let, y = `(sin x)^x + sin^-1 sqrtx`
gain, let y = u + v
Differentiating both sides with respect to x,
`dy/dx = (du)/dx + (dv)/dx` ...(1)
`therefore u = (sin x)^x`
Taking logarithm of both sides,
`log u = log (sin x)^x = x log sin x`
Differentiating both sides with respect to x,
`1/u (du)/dx = x d/dx log sin x + log sin x d/dx (x)`
`= x 1/(sin x) d/dx (sin x) + log sin x xx 1`
`= x * 1/(sin x) * cos x + log sin x xx 1 = x cot x + log sin x`
`therefore (du)/dx` = u (x cot x + log sin x)
= (sin x)x [log sin x + x cot x] ...(2)
v = `sin^-1 sqrt x`
Differentiating both sides with respect to x,
`(dv)/dx = d/dx sin^-1 sqrtx = 1/sqrt(1 - x) d/dx x^(1/2)`
`= 1/sqrt(1 - x) 1/2 x^(-1/2)`
`= 1/(2sqrtx sqrt(1 - x))` ...(3)
Putting the values of `(du)/dx` and `(dv)/dx` from equations (2) and (3) in equation (1),
`(dy)/dx = (sin x)^x [log sin x + x cot x] + 1/(2sqrtx sqrt(1 - x))`
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
Find the second order derivatives of the following : x3.logx
Find the nth derivative of the following : log (ax + b)
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
Derivative of loge2 (logx) with respect to x is _______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
Derivative of `log_6`x with respect 6x to is ______
`log [log(logx^5)]`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
The derivative of x2x w.r.t. x is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
The derivative of log x with respect to `1/x` is ______.
Find the derivative of `y = log x + 1/x` with respect to x.