Advertisements
Advertisements
प्रश्न
if xx+xy+yx=ab, then find `dy/dx`.
उत्तर १
xx+xy+yx=ab........(i)
`Let u=x^x`
`log u=xlogx`
`1/u*(du)/dx=x * 1/x+logx`
`therefore (du)/dx=x^x(1+logx)`
`Let v=x^y`
`logv =ylogx`
`1/v (dv)/dx=(y/x+logx dy/dx)`
`therefore (dv)/dx=x^y(y/x+logx dy/dx)`
`Let w=y^x`
`logw=x log y`
`1/w.(dw)/dx=(x/y*dy/dx+logy)`
`therefore (dw)/dx=y^x(logy+x/y*dy/dx)`
(i) can be written as
u + v + w = ab
`du/dx+dv/dx+dw/dx=0`
`=>x^x+x^xlogx+x^yy/x+x^y logx dy/dx+y^xlogy+y^x x/y dy/dx=0`
`=>dy/dx(x^ylogx+y^x x/y)=x^x+x^xlogx+x^y y/x+ y^x logy`
`=> dy/dx (x^y*logx+xy^(x-1))=(x^x+x^xlogx+yx^(y-1)+y^x*logy)`
`therefore dy/dx=(x^x+x^xlogx+yx^(y-1)+y^x*logy)/(x^y*logx+xy^(x-1))`
उत्तर २
Let u = xy and v = yx
Then, u + v = ab
Differentiating both sides w.r.t x, we get
संबंधित प्रश्न
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Find `dy/dx` for the function given in the question:
yx = xy
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `(d^2y)/(dx^2)` , if y = log x
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Find the second order derivatives of the following : log(logx)
If f(x) = logx (log x) then f'(e) is ______
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
The derivative of log x with respect to `1/x` is ______.
Find the derivative of `y = log x + 1/x` with respect to x.