Advertisements
Advertisements
प्रश्न
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
उत्तर
Here, x = a (cost + t sin t) y = a (sin t – tcost)
Now, x = a (cos t + t sin t),
On differentiating with respect to t,
`dx/dt = a (- sin t + t * cos t + sin t)`
= at cos t
and y = a (sin t - t cos t)
On differentiating with respect to t,
`dy/dx = a[cos t - {t (- sin t) + cos t}]`
= a {cos t + t sin t - cos t}
= at sin t
`therefore dy/dx = (dy//dt)/(dx//dt)`
`= (at sin t)/(at cos t)` = tan t
Differentiating again with respect to x,
`(d^2y)/dx^2 = d/dx (dy/dx)`
`= d/dt (dy/dx) xx dt/dx`
`= d/dt (tan t) xx dt/dx`
`= sec^2 t xx 1/(at cos t) ...[because "dx"/"dt" = "at cos t"]`
`= 1/at sec^3 t`
∴ `(d^2y)/dx^2 = (sec^3 t)/(at), 0 <t <pi/2`
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Evaluate
`int 1/(16 - 9x^2) dx`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
Find the second order derivatives of the following : x3.logx
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
Find the nth derivative of the following : log (ax + b)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
Derivative of loge2 (logx) with respect to x is _______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
The derivative of x2x w.r.t. x is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
If y = `9^(log_3x)`, find `dy/dx`.
Find the derivative of `y = log x + 1/x` with respect to x.