Advertisements
Advertisements
प्रश्न
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
उत्तर
Here, x = a (cost + t sin t) y = a (sin t – tcost)
Now, x = a (cos t + t sin t),
On differentiating with respect to t,
`dx/dt = a (- sin t + t * cos t + sin t)`
= at cos t
and y = a (sin t - t cos t)
On differentiating with respect to t,
`dy/dx = a[cos t - {t (- sin t) + cos t}]`
= a {cos t + t sin t - cos t}
= at sin t
`therefore dy/dx = (dy//dt)/(dx//dt)`
`= (at sin t)/(at cos t)` = tan t
Differentiating again with respect to x,
`(d^2y)/dx^2 = d/dx (dy/dx)`
`= d/dt (dy/dx) xx dt/dx`
`= d/dt (tan t) xx dt/dx`
`= sec^2 t xx 1/(at cos t) ...[because "dx"/"dt" = "at cos t"]`
`= 1/at sec^3 t`
∴ `(d^2y)/dx^2 = (sec^3 t)/(at), 0 <t <pi/2`
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Find the second order derivatives of the following : x3.logx
Find the nth derivative of the following : log (2x + 3)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`"d"/"dx" [(cos x)^(log x)]` = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`log (x + sqrt(x^2 + "a"))`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.
If xy = yx, then find `dy/dx`